Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Periodontol ; 49(11): 1217-1228, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35762068

RESUMO

AIM: The aetiology and pathogenesis of peri-implantitis are currently under active research. This study aimed to dissect the pathogenesis of murine experimental peri-implantitis and assess Resolvin D2 (RvD2) as a new treatment modality. MATERIALS AND METHODS: Four weeks following titanium implant insertion, mice were infected with Porphyromonas gingivalis using single or multiple oral lavages. RvD2 was administrated following infection, and tissues were analysed using flow cytometry, quantitative RT-PCR, taxonomic profiling, and micro-computed tomography. RESULTS: Repeated infections with Pg resulted in microbial dysbiosis and a higher influx of innate and adaptive leukocytes to the peri-implant mucosa (PIM) than to gingiva surrounding the teeth. This was accompanied by increased expression levels of IFN-α, IL-1ß, and RANKL\OPG ratio. Interestingly, whereas repetitive infections resulted in bone loss around implants and teeth, a single infection induced bone loss only around implants, suggesting a higher susceptibility of the implants to infection. Treatment with RvD2 prevented Pg-driven bone loss and reduced leukocyte infiltration to the PIM. CONCLUSIONS: Murine dental implants are associated with dysregulated local immunity and increase susceptibility to pathogen-induced peri-implantitis. However, the disease can be prevented by RvD2 treatment, highlighting the promising therapeutic potential of this treatment modality.


Assuntos
Implantes Dentários , Peri-Implantite , Animais , Implantes Dentários/efeitos adversos , Ácidos Docosa-Hexaenoicos , Camundongos , Peri-Implantite/etiologia , Titânio , Microtomografia por Raio-X/efeitos adversos
2.
Forensic Sci Int ; 361: 112112, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38917506

RESUMO

Body fluid detection is an important component in the toolbox of forensic scientists, with saliva playing a particularly critical role in forensic evidence. Given that each body fluid possesses a distinct microbiome, the identification of body fluid based on specific representatives of the microbiota presents an appealing approach for forensic applications. In this study, we have developed a real-time polymerase chain reaction (RT-PCR)-based method for the precise identification of saliva, focusing on three bacteria highly associated with saliva but not with other tested body fluids -Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus salivarius. The inclusion of these three bacterial species enhances the accuracy of detection and reinforces validation. Notably, specific identification of saliva was achievable even at low concentrations where Phadebas, a commonly used method for saliva detection, proved ineffective. Importantly, bacteria-based saliva detection utilizes DNA generated for small tandem repeats (STR) profiling, facilitating seamless integration into forensic laboratories and optimizing DNA sample utilization. This study collectively proposes an effective bacterial DNA-based approach for saliva identification, demonstrating promising potential for forensic applications.

3.
Cell Rep ; 42(1): 111981, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640306

RESUMO

While saliva regulates the interplay between the microbiota and the oral immune system, the mechanisms establishing postnatal salivary immunity are ill-defined. Here, we show that high levels of neutrophils and neonatal Fc receptor (FcRn)-transferred maternal IgG are temporarily present in the neonatal murine salivary glands in a microbiota-independent manner. During weaning, neutrophils, FcRn, and IgG decrease in the salivary glands, while the polymeric immunoglobulin receptor (pIgR) is upregulated in a growth arrest-specific 6 (GAS6)-dependent manner independent of the microbiota. Production of salivary IgA begins following weaning and relies on CD4-help, IL-17, and the microbiota. The weaning phase is characterized by a transient accumulation of dendritic cells capable of migrating from the oral mucosa to the salivary glands upon exposure to microbial challenges and activating T cells. This study reveals the postnatal mechanisms developed in the salivary glands to induce immunity and proposes the salivary glands as an immune inductive site.


Assuntos
Microbiota , Receptores de Imunoglobulina Polimérica , Camundongos , Animais , Saliva , Glândulas Salivares , Imunoglobulina G
4.
Cell Host Microbe ; 29(2): 197-209.e5, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33412104

RESUMO

Postnatal host-microbiota interplay governs mucosal homeostasis and is considered to have life-long health consequences. The intestine monolayer epithelium is critically involved in such early-life processes; nevertheless, the role of the oral multilayer epithelium remains ill defined. We demonstrate that unlike the intestine, the neonate oral cavity is immensely colonized by the microbiota that decline to adult levels during weaning. Neutrophils are present in the oral epithelium prenatally, and exposure to the microbiota postnatally further recruits them to the preamble neonatal epithelium by γδT17 cells. These neutrophils virtually disappear during weaning as the epithelium seals. The neonate and adult epithelium display distinct turnover kinetics and transcriptomic signatures, with neonate epithelium reminiscent of the signature found in germ-free mice. Microbial reduction during weaning is mediated by the upregulation of saliva production and induction of salivary antimicrobial components by the microbiota. Collectively, unique postnatal interactions between the multilayer epithelium and microbiota shape oral homeostasis.


Assuntos
Carga Bacteriana , Mucosa Bucal/imunologia , Mucosa Bucal/microbiologia , Neutrófilos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Saliva/microbiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/microbiologia , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Bucal/citologia , Mucosa Bucal/crescimento & desenvolvimento , Células Th17/imunologia
5.
Mucosal Immunol ; 13(5): 767-776, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457449

RESUMO

Unlike epidermal Langerhans cells (LCs) that originate from embryonic precursors and are self-renewed locally, mucosal LCs arise and are replaced by circulating bone marrow (BM) precursors throughout life. While the unique lifecycle of epidermal LCs is associated with an age-dependent decrease in their numbers, whether and how aging has an impact on mucosal LCs remains unclear. Focusing on gingival LCs we found that mucosal LCs are reduced with age but exhibit altered morphology with that observed in aged epidermal LCs. The reduction of gingival but not epidermal LCs in aged mice was microbiota-dependent; nevertheless, the impact of the microbiota on gingival LCs was indirect. We next compared the ability of young and aged BM precursors to differentiate to mucosal LCs. Mixed BM chimeras, as well as differentiation cultures, demonstrated that aged BM has intact if not superior capacity to differentiate into LCs than young BM. This was in line with the higher percentages of mucosal LC precursors, pre-DCs, and monocytes, detected in aged BM. These findings suggest that while aging is associated with reduced LC numbers, the niche rather than the origin controls this process in mucosal barriers.


Assuntos
Diferenciação Celular , Microambiente Celular/imunologia , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Biomarcadores , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Microambiente Celular/genética , Senescência Celular/genética , Senescência Celular/imunologia , Células Epidérmicas/imunologia , Células Epidérmicas/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/microbiologia , Expressão Gênica , Gengiva/imunologia , Gengiva/metabolismo , Gengiva/microbiologia , Imunofenotipagem , Células de Langerhans/citologia , Camundongos , Microbiota , Mucosa/microbiologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA