Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 38(14): 2439-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25931422

RESUMO

A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Óxidos/química , Prata/química , Aço Inoxidável/química , Adsorção , Cromatografia Gasosa , Limite de Detecção , Microscopia Eletrônica de Varredura , Nanotecnologia , Hidrocarbonetos Policíclicos Aromáticos/química , Reprodutibilidade dos Testes , Microextração em Fase Sólida , Espectrometria por Raios X , Propriedades de Superfície , Temperatura
2.
J Agric Food Chem ; 70(38): 12211-12219, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36100997

RESUMO

Zearalenone has attracted worldwide attention due to its toxic properties and threat to public health. A rapid determination method for zearalenone and its derivatives by hydrophilic covalent organic frameworks coated steel sheet (HCOFCS) combined with ambient mass spectrometry (AMS) was developed. The HCOFCS behaved as both a tip for solid-phase microextraction and a solid substrate for electrospray ionization mass spectrometry (ESI-MS). To evaluate the HCOFCS-ESI-MS method, five zearalenone and its derivatives in milk samples were determined, including zearalenone (ZEA), α-zearalenol (α-ZEL), ß-zearalenol (ß-ZEL), α-zearalanol (α-ZAL), and ß-zearalanol (ß-ZAL). After the extraction procedure, the HCOFCS was directly added with a high voltage for ESI-MS, and the analysis could be completed within 1 min. The developed method showed good linearity in the range 0.1-100 µg/L with a coefficient of determination (R2) > 0.9991. The limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.05 to 0.1 and 0.2 to 0.3 µg/L, respectively. The results demonstrated that the HCOFCS combined with ESI-MS can be used for the rapid and sensitive determination of trace ZEA and its derivatives in milk samples with satisfactory recoveries from 80.58% to 109.98% and reproducibility with relative standard deviations (RSDs) no more than 11.18%. Furthermore, HCOFCS showed good reusability, which could reuse at least 10 extraction cycles with satisfactory adsorption performance.


Assuntos
Estruturas Metalorgânicas , Zearalenona , Zeranol , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos , Aço/análise , Espectrometria de Massas em Tandem/métodos , Zearalenona/química , Zeranol/análogos & derivados
3.
J Chromatogr A ; 1456: 10-8, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27295963

RESUMO

A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5µgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics.


Assuntos
Flavonoides/urina , Grafite/química , Imidazóis/química , Líquidos Iônicos/química , Óxidos/química , Polivinil/química , Dióxido de Silício/química , Extração em Fase Sólida/métodos , Ânions , Apium/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Troca Iônica , Limite de Detecção , Modelos Estatísticos , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA