Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 19(8): 2840-2853, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850109

RESUMO

Some cancer cell membrane (CCM)-derived nanovesicles show strong homing effects and are used for targeted cancer therapy. By co-constructing the B16F10 cell membrane with a PEGylated phospholipid membrane, a new nanocarrier with a composite nanocrown structure was developed, which can evade immune recognition and actively target homologous melanoma. The nanocrowns have an encapsulation efficiency of more than 90% for paclitaxel and showed no significant difference (p > 0.05) from the PEGylated phospholipid membrane vesicles. Compared with the hyaluronic acid-modified PEGylated phospholipid membrane vesicles, the biomimetic nanocrowns enhanced the escape of nanovesicles from reticuloendothelial cells in vitro and extended the circulation time in vivo; moreover, the nanocrowns showed superior melanoma-targeted drug delivery capability and improved anticancer effects of paclitaxel as demonstrated by the inhibition of B16F10 cell proliferation and induction of apoptosis by interfering with microtubule formation. In contrast, the modification of hyaluronic acid did not increase the targeting capacity or antitumor effects of the nanocrowns, confirming that the superior targeting capacity was mediated by the exposed homologous CCMs rather than by hyaluronic acid. Our results demonstrate the potential of using biomimetic nanocrowns for active melanoma-targeted therapy.


Assuntos
Melanoma , Nanopartículas , Linhagem Celular Tumoral , Membrana Celular , Humanos , Ácido Hialurônico/química , Melanoma/tratamento farmacológico , Nanopartículas/química , Paclitaxel/uso terapêutico , Fosfolipídeos , Polietilenoglicóis
2.
J Nanobiotechnology ; 19(1): 245, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391438

RESUMO

BACKGROUND: A red blood cell membrane (RBCm)-derived drug delivery system allows prolonged circulation of an antitumor treatment and overcomes the issue of accelerated blood clearance induced by PEGylation. However, RBCm-derived drug delivery systems are limited by low drug-loading capacities and the lack of tumor-targeting ability. Thus, new designs of RBCm-based delivery systems are needed. RESULTS: Herein, we designed hyaluronic acid (HA)-hybridized RBCm (HA&RBCm)-coated lipid multichambered nanoparticles (HA&RBCm-LCNPs) to remedy the limitations of traditional RBCm drug delivery systems. The inner core co-assembled with phospholipid-regulated glycerol dioleate/water system in HA&RBCm-LCNPs met the required level of blood compatibility for intravenous administration. These newly designed nanocarriers had a honeycomb structure with abundant spaces that efficiently encapsulated paclitaxel and IR780 for photochemotherapy. The HA&RBCm coating allowed the nanocarriers to overcome the reticuloendothelial system barrier and enhanced the nanocarriers specificity to A549 cells with high levels of CD44. These properties enhanced the combinatorial antitumor effects of paclitaxel and IR780 associated with microtubule destruction and the mitochondrial apoptotic pathway. CONCLUSIONS: The multifunctional HA&RBCm-LCNPs we designed expanded the functionality of RBCm and resulted in a vehicle for safe and efficient antitumor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas , Fotoquimioterapia/métodos , Células A549 , Animais , Apoptose , Biomimética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Membrana Eritrocítica , Eritrócitos , Humanos , Lipossomos/química , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias , Paclitaxel/farmacologia , Tamanho da Partícula , Células RAW 264.7 , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nanomedicine ; 28: 102212, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32334099

RESUMO

Percutaneous absorption of drugs can be enhanced by ethosomes, which are nanocarriers with excellent deformability and drug-loading properties. However, the ethanol within ethosomes increases phospholipid membrane fluidity and permeability, leading to drug leakage during storage. Here, we developed and characterized a new phospholipid nanovesicles that is co-hybridized with hyaluronic acid (HA), ethanol and the encapsulated volatile oil medicines (eugenol and cinnamaldehyde [EUG/CAH]) for transdermal administration. In comparison with EUG/CAH-loaded ethosomes (ES), the formulation stability and percutaneous drug absorption of EUG/CAH-loaded HA-immobilized ethosomes (HA-ES) were significantly improved. After transdermal administration of HA-ES, the interstitial cells of Cajal in the colon of rats with trinitrobenzene sulfonate-induced ulcerative colitis (UC) were significantly increased, and the stem cell factor/c-kit signaling pathway was partly repaired. Overall, HA-ES possesses excellent deformability and showed improved efficacy against UC compared with ES, which is demonstrated as a promising transdermal delivery vehicle for volatile oil medicines.


Assuntos
Acroleína/análogos & derivados , Colite Ulcerativa/tratamento farmacológico , Eugenol/uso terapêutico , Acroleína/administração & dosagem , Acroleína/uso terapêutico , Administração Cutânea , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eugenol/administração & dosagem , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipossomos/química , Nanopartículas/química , Transição de Fase , Fosfolipídeos/química , Ratos , Pele/metabolismo
4.
Nanomedicine ; 29: 102237, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534047

RESUMO

Recently, functional liposomes modified with versatile polymer and cell-based- biomimetic nanoparticles have emerged as the most advanced lipid-polymer hybrid nanocarriers (LPNs) for drug delivery. This review highlights the advances of these two LPNs in the delivery of active ingredients and fractions from Chinese medicine with promising therapeutic, chemopreventive, or chemosensitive effects. To understand their complete potency, the relationship between the nanoparticle characteristics and their in vitro and in vivo performance characteristics has been discussed. Polymer-modified liposomes and cell-based biomimetic nanoparticles are beneficial for improving absorption, modulating release, targeting and overcoming multidrug resistance, and reducing side effects. The associated challenges, current limitations, and opportunities in this field are also discussed.


Assuntos
Materiais Biomiméticos/química , Portadores de Fármacos/uso terapêutico , Medicina Tradicional Chinesa , Nanopartículas/química , Materiais Biomiméticos/uso terapêutico , Portadores de Fármacos/química , Humanos , Lipídeos/química , Lipídeos/fisiologia , Lipossomos/química , Lipossomos/uso terapêutico , Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/uso terapêutico
5.
J Pharm Sci ; 113(6): 1572-1579, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38237668

RESUMO

Poor stability and difficult uptake of natural polysaccharides have been the main problems in their application. The purpose of this study was to optimize the preparation conditions of Polygonatum cyrtonema Hua polysaccharides liposomes (PCPL) and to investigate the immune enhancement activity of PCPL in vitro and in vivo, with a view to discovering new ways of natural polysaccharide application. The optimal preparation conditions of PCPL were as follows: the adding amount of Tween 80 of 0.5 %, the ultrasound time of 2 min and the ultrasound times of once. Under these conditions, the entrapment efficiency, drug loading rate and particle size of PCPL were 38.033 %±0.050, 2.172 %±0.003 and 146 nm, which indicated that PCPL with small particle size could be prepared by the reverse-phase evaporation method. Furthermore, PCPL promoted proliferation, phagocytosis, and secretion of nitric oxide and related cytokines in RAW264.7 cells. Moreover, PCPL improved spleen and thymus indices, increased the number or proportion of red blood cells, platelets, and lymphocytes in the blood, and ameliorated spleen and thymus atrophy in immunosuppressed mice. This study provides a new idea for applying Polygonatum cyrtonema Hua polysaccharides (PCP) and references for studying other polysaccharides.


Assuntos
Lipossomos , Fagocitose , Polygonatum , Polissacarídeos , Animais , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacologia , Polygonatum/química , Células RAW 264.7 , Fagocitose/efeitos dos fármacos , Tamanho da Partícula , Baço/efeitos dos fármacos , Baço/imunologia , Óxido Nítrico/metabolismo , Timo/efeitos dos fármacos , Timo/imunologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Masculino
6.
Int J Pharm ; 552(1-2): 360-370, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292894

RESUMO

The chief objective of this research was to appraise liposomes embodying a bile salt, sodium glycocholate (SGC), as oral nanoscale drug delivery system to strengthen the bioavailability of a water-soluble and weakly penetrable pharmaceutical, notoginsenoside R1 (NGR1). NGR1-loaded liposomes were prepared with the improved supercritical reverse evaporation (ISCRPE) method and the preparation conditions were optimized with response surface methodology (RSM). The mean encapsulation efficiency (EE), particle size, and polydispersity index (PDI) of the optimized liposomal formulation (NGR1@Liposomes) were 49.49%, 308.3 nm, and 0.229, respectively. SGC-mediated liposomes (NGR1@SGC-Liposomes) were formulated based on the optimal preparation conditions and the mean EE, particle size, and PDI were 41.51%, 200.1 nm, and 0.130, respectively. The in vitro Caco-2 cellular uptake of fluorescent marker was increased by loading into NGR1@SGC-Liposomes as compared with the conventional liposomes. Furthermore, the intestinal permeability as well as the intestinal absorption of NGR1 were both significantly improved with NGR1@SGC-Liposomes as the nanovesicles. The in vivo pharmacokinetic study results showed that AUC0-t value of NGR1@SGC-Liposomes and NGR1@Liposomes was 2.68- and 2.03-fold higher than that of NGR1 aqueous solution, respectively. The AUC0-t of the NGR1@SGC-Liposomes group was significantly higher than that of NGR1@Liposomes. Thus, ISCRPE method is a feasible method for the preparation of water-soluble drug-loaded liposomes and bile salt-mediated liposomes may enhance the oral absorption of water-soluble and poorly permeable drugs.


Assuntos
Ginsenosídeos/administração & dosagem , Ácido Glicocólico/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Composição de Medicamentos , Liberação Controlada de Fármacos , Ginsenosídeos/química , Ginsenosídeos/farmacocinética , Ácido Glicocólico/química , Ácido Glicocólico/farmacocinética , Humanos , Absorção Intestinal , Lipossomos , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA