Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 208: 111451, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068974

RESUMO

Microplastics (MPs), a kind of novel contaminant, have potential to concentrate and transport heavy metals in the aquatic environment. This feature may affect the distribution and bioavailability of heavy metals. In order to determine the sorption behaviors of heavy metals onto the MPs, the sorption kinetics and mechanisms were investigated between the MPs (polyvinylchloride PVC, polyethylene PE, polystyrene PS) and Pb(II). The results suggested that the Pb(II) sorption onto the MPs were pH- and ionic strength-dependent. The sorption processes were best fitted by the pseudo-second-order model, and the rate-limiting steps were the intraparticle diffusion and final equilibrium process. The maximum sorption capacities of PVC, PE and PS were 483.1 µg/g, 416.7 µg/g and 128.5 µg/g under the condition of 0.01 M NaCl, pH 6.0, T = 298 K. The sorption rate constants were in the following order: PVC

Assuntos
Chumbo/química , Microplásticos/química , Poluentes Químicos da Água/química , Adsorção , Difusão , Cinética , Metais Pesados , Concentração Osmolar , Plásticos/química , Polietileno , Poliestirenos , Poluentes Químicos da Água/análise
2.
Carbohydr Polym ; 327: 121666, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171658

RESUMO

Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.


Assuntos
Dextranos , Magnésio , Magnésio/farmacologia , Dextranos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Regeneração Óssea , Osteogênese , Durapatita/farmacologia , Apoptose , Alicerces Teciduais
3.
Int J Biol Macromol ; 258(Pt 1): 128520, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040150

RESUMO

In this study, we developed an enhanced heterogeneous interface intelligent conductive hydrogel NH3 sensor for individualized treatment of infected wounds. The sensor achieved monitoring, self-diagnosis, and adaptive gear adjustment functions. The PPY@PDA/PANI(3/6) sensor had a minimum NH3 detection concentration of 50 ppb and a response value of 2.94 %. It also had a theoretical detection limit of 49 ppt for infected wound gas. The sensor exhibited a fast response time of 23.2 s and a recovery time of 42.9 s. Tobramycin (TOB) was encapsulated in a self-healing QCS/OD hydrogel formed by quaternized chitosan (QCS) and oxidized dextran (OD), followed by the addition of polydopamine-coated polypyrrole nanowires (PPY@PDA) and polyaniline (PANI) to prepare electrically conductive drug-loaded PPY@PDA/PANI hydrogels. The drug-loaded PPY@PDA/PANI hydrogel was combined with a PANI/PVDF membrane to form an enhanced heterogeneous interfacial PPY@PDA/PANI/PVDF-based sensor, which could adaptively learn the individual wound ammonia response and adjust the speed of drug release from the PPY@PDA/PANI hydrogel with electrical stimulation. Drug release and animal studies demonstrated the efficacy of the PPY@PDA/PANI hydrogel in inhibiting infection and accelerating wound healing. In conclusion, the gas-sensitive conductive hydrogel sensing system is expected to enable intelligent drug delivery and provide personalized treatment for complex wound management.


Assuntos
Quitosana , Polímeros de Fluorcarboneto , Polímeros , Polivinil , Animais , Hidrogéis/farmacologia , Pirróis
4.
Environ Pollut ; 337: 122607, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37757935

RESUMO

Rivers are known as major pathways for transporting microplastics from terrestrial areas to the marine environment. However, the behavior of microplastics in terms of retention and transport within riverine systems remains unclear. While considerable efforts have been made to investigate the water column and sediment, limited attention has been given to understanding the interplay between microplastics and benthic biofilms. Therefore, this study aimed to examine the distribution of biofilm-trapped microplastics along the CaoE River and identify the factors influencing the immobilization of microplastics by benthic biofilms. The findings of this study revealed that benthic biofilms served as a sink of microplastics in the CaoE River, with an average abundance of 575 items/m2 in tributaries and 894 items/m2 in the main stream. The dominant shape of microplastics was fiber, while the primary polymer type was polyethylene terephthalate. The distribution of microplastics exhibited significant spatial heterogeneity, as indicated by their abundance and characteristics. In order to reveal the intriguing phenomenon, variations of influencing factors were estimated, including physicochemical characteristics of water, extracellular polymeric substances of benthic biofilms, and microbial communities of benthic biofilms. A partial least squares path modeling analysis was performed using these variables, revealing that water velocity and microbial diversity of benthic biofilms were the key factors influencing the interaction between microplastics and benthic biofilms. In summary, this study provides substantial evidence confirming the crucial role of benthic biofilms in the immobilization of microplastics, which expands concerns about microplastic pollution in the riverine systems. Furthermore, uncovering the underlying influences of microplastic-biofilm interactions will facilitate the development of effective strategies for the control and management of microplastic pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Rios/química , Água/análise , Biofilmes
5.
Environ Pollut ; 327: 121528, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997146

RESUMO

Microplastics (MPs) are increasingly being detected in freshwater environments, which have the potential to cause combined toxicity with other contaminants on aquatic organisms. To reveal the ecological risks, the combined effects of lead (Pb) and polyvinyl chloride microplastics (MPs) were explored in the gut of common carp (Cyprinus carpio L.). The results confirmed that exposure of Pb alone accelerated Pb accumulation, increased oxidative stress, and activated the inflammation response of the gut. However, the aforementioned effects all decreased under the co-exposure of Pb and MPs. In addition, MPs altered intestinal microbial community of common carp, especially the abundance of immune system-related species. All measured variables were organized for partial least square path modeling, which revealed the combined effects of Pb and MPs on inflammation response. The results implied that MPs reduced inflammation response in two ways, including the reduction of intestinal Pb accumulation and the alteration of the intestinal microbial community. Overall, this study provides a novel aspect of ecological effects on aquatic animals from Pb and MPs exposure. The interesting results remind us that when exploring the ecological risks of MPs, combined effects from other toxic substances must be considered simultaneously.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/farmacologia , Chumbo/toxicidade , Poluentes Químicos da Água/análise , Estresse Oxidativo , Inflamação/induzido quimicamente
6.
Int J Biol Macromol ; 224: 533-543, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265540

RESUMO

With the development of minimally invasive orthopedics, injectable materials for bone repair are attracted more attention, especially for those wound with a small external mouth and sizeable internal cavity. In this work, the hydrogel with features of thermo-responsiveness, degradability and injectability was designed and fabricated. The hydrogel, named as FHCS, is composed of Pluronic F-127 (F127) loaded with carboxymethyl chitosan/sodium alginate nanoparticles (nCS) and nanohydroxyapatite (nHA). The hydrogel FHCS was non-toxic and good hemocompatible. It can enhance the ALP activity and extracellular matrix calcification of MC3T3-E1 due to the chitosan-based nanoparticle components (nCS). Moreover, FHCS-5 (containing 5 mg/mL nCS) showed relative high expression of osteogenic genes and protein markers. Osteal regeneration was observed treated by FHCS-5 hydrogel in a critical-size rat calvarial bone defect model. CT scanning showed that the whole defect was basically covered by new bone after FHCS-5 hydrogel. The results of H&E staining and Masson's trichrome staining on histological sections further confirmed that FHCS-5 hydrogel promoted new osteal formation and maturation, which up regulated the osteogenic related genes and proteins of ALP, OCN, OPN through BMP/Smad signaling pathway. Hence, this study suggests that FHCS-5 hydrogels have a promising application for non-loading bone regeneration.


Assuntos
Produtos Biológicos , Quitosana , Nanopartículas , Ratos , Animais , Osteogênese , Hidrogéis , Alginatos , Cicatrização
7.
Sci Total Environ ; 832: 155026, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390363

RESUMO

Microplastics (MPs) are regarded as transport media for heavy metals in aquatic systems, whereas the effects of the heavy metal-enriched MPs on microbial biofilms are still unclear. In this study, Pb(II) sorption onto polyvinyl chloride (PVC) MPs and its effects on the formation and ecological functions of microbial biofilms were investigated. The results showed that the interaction between Pb(II) and PVC MPs was dominated by physisorption. The maximum sorption amount reached 1.25 mg/g. Afterward, microbial biofilms were exposed to the Pb(II)-enriched PVC particles. It is suggested that Pb(II)-enriched PVC exposure reduced productivities of polysaccharides and proteins in extracellular polymeric substances, which restricted the formation of microbial biofilms. Meanwhile, microbial community structure was reassembled accompanying the decline of capacities for nitrate and phosphate removal. Therefore, this study examines the ecological risk associated with the heavy metal-enriched MPs that can adversely affect microbial biofilms.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Biofilmes , Chumbo , Microplásticos , Plásticos/química , Cloreto de Polivinila , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA