Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(19): e2001215, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32307923

RESUMO

Development of molecular probes holds great promise for early diagnosis of aggressive prostate cancer. Here, 2-[3-(1,3-dicarboxypropyl) ureido] pentanedioic acid (DUPA)-conjugated ligand and bis-isoindigo-based polymer (BTII) are synthesized to formulate semiconducting polymer nanoparticles (BTII-DUPA SPN) as a prostate-specific membrane antigen (PSMA)-targeted probe for prostate cancer imaging in the NIR-II window. Insights into the interaction of the imaging probes with the biological targets from single cell to whole organ are obtained by transient absorption (TA) microscopy and photoacoustic (PA) tomography. At single-cell level, TA microscopy reveals the targeting efficiency, kinetics, and specificity of BTII-DUPA SPN to PSMA-positive prostate cancer. At organ level, PA tomographic imaging of BTII-DUPA SPN in the NIR-II window demonstrates superior imaging depth and contrast. By intravenous administration, BTII-DUPA SPN demonstrates selective accumulation and retention in the PSMA-positive tumor, allowing noninvasive PA detection of PSMA overexpressing prostate tumors in vivo. The distribution of nanoparticles inside the tumor tissue is further analyzed through TA microscopy. These results collectively demonstrate BTII-DUPA SPN as a promising probe for prostate cancer diagnosis by PA tomography.


Assuntos
Nanopartículas , Neoplasias da Próstata , Linhagem Celular Tumoral , Diagnóstico por Imagem , Humanos , Masculino , Polímeros , Neoplasias da Próstata/diagnóstico por imagem
2.
Nat Commun ; 8: 15117, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436473

RESUMO

Volumetric imaging allows global understanding of three-dimensional (3D) complex systems. Light-sheet fluorescence microscopy and optical projection tomography have been reported to image 3D volumes with high resolutions and at high speeds. Such methods, however, usually rely on fluorescent labels for chemical targeting, which could perturb the biological functionality in living systems. We demonstrate Bessel-beam-based stimulated Raman projection (SRP) microscopy and tomography for label-free volumetric chemical imaging. Our SRP microscope enables fast quantitation of chemicals in a 3D volume through a two-dimensional lateral scan. Furthermore, combining SRP and sample rotation, we demonstrate the SRP tomography that can reconstruct the 3D distribution of chemical compositions with optical spatial resolution at a higher speed than the Gaussian-beam-based stimulated Raman scattering sectioning imaging can. We explore the potential of our SRP technology by mapping polymer particles in 3D volumes and lipid droplets in adipose cells.


Assuntos
Células 3T3-L1/química , Células 3T3-L1/citologia , Microscopia Óptica não Linear/métodos , Tomografia/métodos , Animais , Imageamento Tridimensional/métodos , Camundongos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA