Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 526(2): 328-333, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32220497

RESUMO

OBJECTIVE: To develop a drug-eluting polymer film which can be easily personalized and rapidly made on the electrode array of a cochlear implant during surgery. METHODS: A precursor solution was prepared with poly lactic-co-glycolic acid (PLGA) and trichloromethane. Using a dip-coating method, the silicone electrode array (HiFocus 1J, Advanced Bionics) was coated in polymer film produced from the precursor solution containing one of three drugs: dexamethasone sodium phosphate (DSP), cytosine arabinoside hydrochloride (Ara-C), or nicotinamide adenine dinucleotide (NAD), and the release of these drugs from the polymer film was studied. The drug-eluting film on the electrode array was analyzed by environmental scanning electron microscopy (ESEM). The water contact angle and the impedance of the electrode array were measured before and after coating. Drug release kinetics was evaluated in a quasi-stationary release model, using high performance liquid chromatography every 24 h for 15 days. RESULTS: Five electrode arrays were tested with each of the three drugs in the polymer film coating. Before and after coating, ESEM studies revealed that the drug-loaded PLGA coating yielded a smooth covering with an average thickness of 1.02 ± 0.05 µm. The mass of the coated electrode increased by 1.00 ± 0.03 mg. The water contact angle decreased after coating (102 ± 0.6° vs 77 ± 1.6°, p < 0.01) but there was no significant change in the average impedance of the electrodes after coating (0.9 ± 0.22 kΩ vs 1.0 ± 0.18 kΩ, p > 0.05). An in vitro drug kinetics study revealed a faster release in the first 24 h (63.4 ± 0.6%) and a sustained release over the following 15 days (78.3 ± 1.7% in 2 days, 95.6 ± 1.0% in 7 days and 99.1 ± 0.4% in 14 days). The release rate was not affected by the drug, dose or the thickness of the coating. CONCLUSION: The dip-coating method is feasible for rapid casting of a drug-eluting PLGA film on an electrode array during CI surgery. The coated electrode array maintained its original morphology and became more hydrophilic. The loaded drug is released in a sustained manner and is easily regulated, and so the method might represent a potential application for clinical use in cochlear implantation.


Assuntos
Implantes Cocleares , Portadores de Fármacos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Implante Coclear , Liberação Controlada de Fármacos , Eletrodos Implantados , Silício/química
2.
Drug Des Devel Ther ; 15: 3443-3450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413631

RESUMO

OBJECTIVE: To investigate the hearing protection outcomes of different drug-eluting analog electrode arrays implanted into guinea pig cochleae. METHODS: Sixty guinea pigs were randomly divided into a negative control group and five experimental groups implanted separately with blank (drug carrier), dexamethasone (DXM), aracytine (Ara-C), Ara-C+DXM, and nicotinamide adenine dinucleotide (NAD+) eluting analog electrode arrays. Micro CT was used to supervise the surgical procedure. Auditory brainstem response (ABR) thresholds of the guinea pigs were measured and analyzed. RESULTS AND CONCLUSIONS: Compared with the negative control, all other groups showed a significant increase in ABR threshold (p<0.001) after surgery. Among them, there was no obvious difference between the blank (0 vs 90 days: 59.70±10.57 vs 64.60±9.47 dB SPL) and the NAD+ group (0 vs 90 days: 59.90±9.87 vs 64.70±8.65 dB SPL). On the other hand, the ABR thresholds in the DXM (0 days: 58.10±10.73 dB SPL; 90 days: 51.70±9.07 dB SPL) and the Ara-C group (0 days: 59.00±10.05 dB SPL; 90 days: 51.60±8.48 dB SPL) decreased significantly compared with the former two groups (p<0.001). However, the Ara-C+DXM group showed no further benefit (p>0.05). In addition, a significantly higher survival rate of spiral ganglion neurons in cochleae was observed in the Ara-C and/or DXM groups.


Assuntos
Implantes Cocleares , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva/prevenção & controle , Animais , Citarabina/administração & dosagem , Dexametasona/administração & dosagem , Eletrodos Implantados , Feminino , Cobaias , NAD/administração & dosagem , Polímeros/química
3.
Neurochem Int ; 126: 178-186, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30904670

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Rupture of lysosome is a major cellular stress condition leading to cell death in PD. We have previously shown that environmental oxidative toxins could impair autophagic flux and lysosomal functions in PD. Poloxamer 188 (P188) is an amphipathic polymer which has cytoprotective effect in traumatic brain injury and stroke. But whether Dyrk1A could rescue lysosome malfunction-mediated DA neuron death and α-synuclein aggregation in PD is still unknown. In the present study, MPTP mice models and MPP+-treated SH-SY5Y cells were used for study, and we found that P188 rescued MPP+-induced lysosomal dysfunction and impaired autophagy flux in mild MPP+-treated SH-SY5Y cells. P188 administration significantly restored lysosomal membrane integrity and prevented cathepsins leakage from the lysosomes into the cytoplasm, which triggered caspase-dependent apoptotic cell death in sub-acute MPTP mouse model and MPP+-treated SH-SY5Y cells. Furthermore, P188 ameliorated α-synuclein accumulation and behavioral impairment in chronic MPTP mouse model with MPTP and probenecid treatment. P188 could alleviate MPTP-induced DA neurons damage by restoring lysosome function.


Assuntos
Membrana Celular/patologia , Lisossomos/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Poloxâmero/uso terapêutico , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/induzido quimicamente , Poloxâmero/farmacologia , Tensoativos/farmacologia , Tensoativos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA