Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(4): 1789-1822, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38170619

RESUMO

Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.


Assuntos
Imunoterapia , Vacinas , Materiais Biocompatíveis/uso terapêutico , Proteínas
2.
Nat Mater ; 18(2): 175-185, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643235

RESUMO

Fully effective vaccines for complex infections must elicit a diverse repertoire of antibodies (humoral immunity) and CD8+ T-cell responses (cellular immunity). Here, we present a synthetic glyco-adjuvant named p(Man-TLR7), which, when conjugated to antigens, elicits robust humoral and cellular immunity. p(Man-TLR7) is a random copolymer composed of monomers that either target dendritic cells (DCs) via mannose-binding receptors or activate DCs via Toll-like receptor 7 (TLR7). Protein antigens are conjugated to p(Man-TLR7) via a self-immolative linkage that releases chemically unmodified antigen after endocytosis, thus amplifying antigen presentation to T cells. Studies with ovalbumin (OVA)-p(Man-TLR7) conjugates demonstrate that OVA-p(Man-TLR7) generates greater humoral and cellular immunity than OVA conjugated to polymers lacking either mannose targeting or TLR7 ligand. We show significant enhancement of Plasmodium falciparum-derived circumsporozoite protein (CSP)-specific T-cell responses, expansion in the breadth of the αCSP IgG response and increased inhibition of sporozoite invasion into hepatocytes with CSP-p(Man-TLR7) when compared with CSP formulated with MPLA/QS-21-loaded liposomes-the adjuvant used in the most clinically advanced malaria vaccine. We conclude that our antigen-p(Man-TLR7) platform offers a strategy to enhance the immunogenicity of protein subunit vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Protozoários/química , Glicoconjugados/química , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Polímeros/química , Adjuvantes Imunológicos/química , Animais , Camundongos , Plasmodium falciparum/imunologia , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia
3.
Biomacromolecules ; 20(11): 4075-4087, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614080

RESUMO

An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.


Assuntos
Fibronectinas/farmacologia , Hidrogéis/farmacologia , Neurônios/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Fibronectinas/química , Humanos , Hidrogéis/química , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/crescimento & desenvolvimento , Neuritos/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Traumatismos da Medula Espinal/patologia
4.
Am J Transplant ; 18(3): 590-603, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068143

RESUMO

Islet encapsulation may allow transplantation without immunosuppression, but thus far islets in large microcapsules transplanted in the peritoneal cavity have failed to reverse diabetes in humans. We showed that islet transplantation in confined well-vascularized sites like the epididymal fat pad (EFP) improved graft outcomes, but only conformal coated (CC) islets can be implanted in these sites in curative doses. Here, we showed that CC using polyethylene glycol (PEG) and alginate (ALG) was not immunoisolating because of its high permselectivity and strong allogeneic T cell responses. We refined the CC composition and explored PEG and islet-like extracellular matrix (Matrigel; MG) islet encapsulation (PEG MG) to improve capsule immunoisolation by decreasing its permselectivity and immunogenicity while allowing physiological islet function. Although the efficiency of diabetes reversal of allogeneic but not syngeneic CC islets was lower than that of naked islets, we showed that CC (PEG MG) islets from fully MHC-mismatched Balb/c mice supported long-term (>100 days) survival after transplantation into diabetic C57BL/6 recipients in the EFP site (750-1000 islet equivalents/mouse) in the absence of immunosuppression. Lack of immune cell penetration and T cell allogeneic priming was observed. These studies support the use of CC (PEG MG) for islet encapsulation and transplantation in clinically relevant sites without chronic immunosuppression.


Assuntos
Separação Celular/métodos , Diabetes Mellitus Experimental/terapia , Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas/instrumentação , Ilhotas Pancreáticas/citologia , Neovascularização Fisiológica , Polietilenoglicóis/química , Aloenxertos , Animais , Cápsulas , Ilhotas Pancreáticas/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
J Allergy Clin Immunol ; 140(5): 1339-1350, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28343701

RESUMO

BACKGROUND: Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. OBJECTIVE: Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. METHODS: Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist-encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow-derived DCs enabled benchmarking of the TLR8 agonist-encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25-loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. RESULTS: Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist-adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. CONCLUSION: TLR8 agonist-encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacina BCG/imunologia , Células Dendríticas/imunologia , Imidazóis/administração & dosagem , Monócitos/imunologia , Nanopartículas/administração & dosagem , Quinolinas/administração & dosagem , Imunidade Adaptativa , Animais , Animais Recém-Nascidos , Biomimética , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Imidazóis/química , Imidazóis/farmacologia , Imunidade Inata , Imunomodulação , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Nanopartículas/química , Polímeros/química , Quinolinas/química , Quinolinas/farmacologia , Receptor 8 Toll-Like/agonistas , Vacinação
6.
Proc Natl Acad Sci U S A ; 111(29): 10514-9, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24982192

RESUMO

Encapsulation of islets of Langerhans may represent a way to transplant islets in the absence of immunosuppression. Traditional methods for encapsulation lead to diffusional limitations imposed by the size of the capsules (600-1,000 µm in diameter), which results in core hypoxia and delayed insulin secretion in response to glucose. Moreover, the large volume of encapsulated cells does not allow implantation in sites that might be more favorable to islet cell engraftment. To address these issues, we have developed an encapsulation method that allows conformal coating of islets through microfluidics and minimizes capsule size and graft volume. In this method, capsule thickness, rather than capsule diameter, is constant and tightly defined by the microdevice geometry and the rheological properties of the immiscible fluids used for encapsulation within the microfluidic system. We have optimized the method both computationally and experimentally, and found that conformal coating allows for complete encapsulation of islets with a thin (a few tens of micrometers) continuous layer of hydrogel. Both in vitro and in vivo in syngeneic murine models of islet transplantation, the function of conformally coated islets was not compromised by encapsulation and was comparable to that of unencapsulated islets. We have further demonstrated that the structural support conferred by the coating materials protected islets from the loss of function experienced by uncoated islets during ex vivo culture.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Microfluídica/instrumentação , Alginatos/farmacologia , Animais , Agregação Celular , Simulação por Computador , Desenho de Equipamento , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Hidrodinâmica , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Modelos Biológicos , Polietilenoglicóis/farmacologia , Reprodutibilidade dos Testes
7.
Cancer Immunol Immunother ; 64(8): 1033-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982370

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c(hi) Ly6g(-) monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 days post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c(lo) Ly6g(+) granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1(int) Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c(hi) macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8(+) T cells in melanoma cells expressing OVA. These findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/transplante , Imunoterapia Adotiva/métodos , Melanoma Experimental/terapia , Células Mieloides/fisiologia , Tioguanina/administração & dosagem , Timoma/terapia , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunização , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Micelas , Polímeros , Timoma/imunologia , Microambiente Tumoral/efeitos dos fármacos
8.
Nature ; 462(7272): 449-60, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19940915

RESUMO

The engineering of materials that can modulate the immune system is an emerging field that is developing alongside immunology. For therapeutic ends such as vaccine development, materials are now being engineered to deliver antigens through specific intracellular pathways, allowing better control of the way in which antigens are presented to one of the key types of immune cell, T cells. Materials are also being designed as adjuvants, to mimic specific 'danger' signals in order to manipulate the resultant cytokine environment, which influences how antigens are interpreted by T cells. In addition to offering the potential for medical advances, immunomodulatory materials can form well-defined model systems, helping to provide new insight into basic immunobiology.


Assuntos
Materiais Biocompatíveis/farmacologia , Bioengenharia/métodos , Fatores Imunológicos/imunologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Bioengenharia/tendências , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico
9.
Nat Mater ; 12(11): 1072-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121990

RESUMO

The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that the 3D invasion of primary human mesenchymal stem cells can be spatiotemporally controlled by micropatterning the hydrogel with desired extracellular matrix (ECM) proteins and growth factors. A peptide substrate of activated transglutaminase factor XIII (FXIIIa)--a key ECM crosslinking enzyme--is rendered photosensitive by masking its active site with a photolabile cage group. Covalent incorporation of the caged FXIIIa substrate into poly(ethylene glycol) hydrogels and subsequent laser-scanning lithography affords highly localized biomolecule tethering. This approach for the 3D manipulation of cells within gels should open up avenues for the study and manipulation of cell signalling.


Assuntos
Engenharia Celular/métodos , Fator XIIIa/química , Fator XIIIa/metabolismo , Hidrogéis/química , Luz , Células-Tronco Mesenquimais/citologia , Sequência de Aminoácidos , Animais , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Microtecnologia , Fotólise , Polietilenoglicóis/química , Coelhos
10.
Adv Healthc Mater ; 12(26): e2300515, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503634

RESUMO

Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.


Assuntos
Diabetes Mellitus , Polímeros , Humanos , Polímeros/farmacologia , Manose , Preparações de Ação Retardada/farmacologia , Butiratos/farmacologia , Butiratos/uso terapêutico , Cicatrização , Diabetes Mellitus/tratamento farmacológico , Ésteres
11.
Science ; 381(6658): 686-693, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561870

RESUMO

The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.


Assuntos
Polímeros , Semicondutores , Adesivos Teciduais , Transistores Eletrônicos , Animais , Ratos , Fenômenos Eletrofisiológicos , Polímeros/química , Coração/fisiologia , Músculo Esquelético/fisiologia
12.
Mol Pharm ; 9(10): 2812-8, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22954101

RESUMO

Colloidal drug and prodrug conjugates have unique targeting characteristics for tumor vasculature from the blood and for the lymphatics draining a tissue injection site. Tioguanine and tioguanine-generating prodrugs have been investigated as anticancer and immunosuppressive agents, including use in cancer immunotherapy. Recently we developed block copolymers of poly(ethylene glycol)-bl-poly(propylene sulfide) that self-assemble in aqueous solutions to form micellar structures. Since the polymers carry a free terminal thiol group resulting from the ring-opening polymerization of the propylene sulfide monomer, we sought to prepare prodrug block copolymers with tioguanine linked by a reduction-sensitive disulfide bond. The synthesis involved a disulfide exchange between the oxidized form of tioguanine and the polymer. Spectroscopic data is presented to support the proposed reaction. The polymers self-assembled when dispersed in water to form tioguanine prodrug micelles with a size range between 18 and 40 nm that released tioguanine in response to cysteine and serum as shown spectroscopically. In comparison with a poly(ethylene glycol) prodrug polymer, we show that the rate of tioguanine release can be controlled by changing the poly(propylene sulfide) block length and that the tioguanine remains bioactive with cultured cells.


Assuntos
Micelas , Pró-Fármacos/química , Tioguanina/química , Linhagem Celular Tumoral , Dissulfetos/química , Células HeLa , Humanos , Melanoma Experimental , Oxirredução , Tamanho da Partícula , Polietilenoglicóis/química , Polimerização , Polímeros/química , Sulfetos/química , Água/química
13.
Methods ; 54(1): 92-100, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21146611

RESUMO

Analytical ultracentrifugation (AUC) primarily serves to investigate hydrodynamic and thermodynamic properties of natural and synthetic macromolecules and colloids in solution, dispersion or suspension. Beside such more conventional use, AUC can support materials development particularly by combining different optical systems, if the AUC is equipped with such, or using complementary data evaluation approaches. In this context, an Optima XL-I equipped with absorbance (AO) and interference optics (IO) was used alone or complementary to study the success of conjugation of biopolymers, to evaluate the completeness of the incorporation of macromolecules into micelles and vesicles, and to analyze the composition and homogeneity of macromolecular assemblies. The combination of AO and IO proved covalent binding of concanavalin A to dextran without macromolecular degradation as well as the formation of mixed micelles composed of two types of block copolymers. Further, AUC contributed to analyze the homogeneity, purity, size and size distribution of carbon monoxide-releasing macromolecular assemblies. These case studies revealed that the application possibilities of AUC are by far not completely discovered but can still be extended.


Assuntos
Materiais Biocompatíveis/química , Ultracentrifugação/métodos , Engenharia Biomédica , Biopolímeros/química , Monóxido de Carbono/química , Dextranos/química , Hidrodinâmica , Micelas , Proteínas/química , Termodinâmica
15.
J Nanobiotechnology ; 9: 7, 2011 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-21352596

RESUMO

BACKGROUND: Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. RESULTS: Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. CONCLUSIONS: This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative environments, smart theranostic applications combining drug delivery with imaging of platform localization are within reach. The modular design of these USPIO nanoclusters enables future development of platforms for imaging and drug delivery targeted towards proteolytic activity in tumors and in advanced atherosclerotic plaques.


Assuntos
Preparações de Ação Retardada/síntese química , Dextranos/química , Nanopartículas de Magnetita/química , Polietilenoglicóis/síntese química , Sulfetos/síntese química , Reagentes de Ligações Cruzadas/química , Micelas , Polietilenoglicóis/química
16.
Biomacromolecules ; 11(3): 827-31, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20158193

RESUMO

Methods to manipulate and visualize isolated DNA and oligonucleotide strands are important for investigation of their biophysics as well as their interactions with proteins. Herein, we report such a method by combining a block copolymer surface functionalization strategy with microfluidics. The copolymer poly(l-lysine-graft-polyethylene glycol) (PLL-g-PEG) coated one surface of the microfluidic channels, rendering it passive to adsorption and thus minimizing any noise arising from nontargeted adsorbed molecules. Single lambda-phage DNA molecules were immobilized and were extended by molecular combing. Their extension did not exceed their contour length, which we attribute to the low surface tension of the coated surface. To demonstrate further the applicability of our method, the anchored DNA was extended by hydrodynamic flow. We propose this method for exploring DNA-protein interactions due to the copolymer's enhanced capacity for single-molecule detection, stability under wet or dry conditions, hydrophilicity, full compatibility with microfluidics and simplicity being a one-step process.


Assuntos
DNA Viral/química , Microfluídica , Polímeros/química , Bacteriófago lambda/genética , Tensão Superficial
17.
J Am Chem Soc ; 131(40): 14413-8, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19764751

RESUMO

We designed block copolymer pro-amphiphiles and amphiphiles for providing very long-term release of nitric oxide (NO). A block copolymer of N-acryloylmorpholine (AM, as a hydrophile) and N-acryloyl-2,5-dimethylpiperazine (AZd, as a hydrophilic precursor) was synthesized. The poly(N-acryloyl-2,5-dimethylpiperazine) (PAZd) is water-soluble, but chemical reaction of the secondary amines with NO to form a N-diazeniumdiolate (NONOate) converts the hydrophilic PAZd into a hydrophobic poly(sodium-1-(N-acryloyl-2,5-dimethylpiperazin-1-yl)diazen-1-ium-1,2-diolate) (PAZd.NONOate), driving aggregation. The PAM block guides this process toward micellization, rather than precipitation, yielding ca. 50 nm spherical micelles. The hydrophobic core of the micelle shielded the NONOate from the presence of water, and thus protons, which are required for NO liberation, delaying release to a remarkable 7 d half-life. Release of the NO returned the original soluble polymer. The very small NO-loaded micelles were able to penetrate complex tissue structures, such as the arterial media, opening up a number of tissue targets to NO-based therapy.


Assuntos
Resinas Acrílicas/química , Micelas , Doadores de Óxido Nítrico/química , Óxido Nítrico/química , Piperazinas/química , Resinas Acrílicas/síntese química , Compostos Azo/química , Doadores de Óxido Nítrico/síntese química , Piperazinas/síntese química
18.
Nat Mater ; 7(3): 248-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18246072

RESUMO

The extracellular matrix of dense, avascular tissues presents a barrier to entry for polymer-based therapeutics, such as drugs encapsulated within polymeric particles. Here, we present an approach by which polymer nanoparticles, sufficiently small to enter the matrix of the targeted tissue, here articular cartilage, are further modified with a biomolecular ligand for matrix binding. This combination of ultrasmall size and biomolecular binding converts the matrix from a barrier into a reservoir, resisting rapid release of the nanoparticles and clearance from the tissue site. Phage display of a peptide library was used to discover appropriate targeting ligands by biopanning on denuded cartilage. The ligand WYRGRL was selected in 94 of 96 clones sequenced after five rounds of biopanning and was demonstrated to bind to collagen II alpha1. Peptide-functionalized nanoparticles targeted articular cartilage up to 72-fold more than nanoparticles displaying a scrambled peptide sequence following intra-articular injection in the mouse.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/química , Artropatias/tratamento farmacológico , Nanopartículas/química , Polímeros/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Bovinos , Colágeno Tipo II/química , Colágeno Tipo II/metabolismo , Sistemas de Liberação de Medicamentos , Injeções Intra-Articulares , Camundongos , Biblioteca de Peptídeos , Peptídeos/química , Ligação Proteica
19.
Biomaterials ; 29(3): 314-26, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17953986

RESUMO

The formation of scar tissue due to dedifferentiation of smooth muscle cells (SMCs) is one of the major issues faced when engineering bladder tissue. Furthermore, cell sources for regenerating the SMC layer are also limiting. Here we explore if human mesenchymal stem cells (MCSs), cultured in enzymatically degradable poly(ethylene glycol) (PEG) hydrogel scaffolds can be differentiated into SMC-like cells. We explored the degree to which a less synthetic SMC phenotype can be achieved when primary human SMCs are cultured within these scaffolds, It was observed that when both MSCs and SMCs are cultured in the PEG hydrogel scaffolds, but not on traditional tissue culture plastic, they up-regulate markers associated with the less synthetic SMC phenotype, decreased expression of alpha(5) integrin and THY-1, and increased expression of alpha-smooth muscle actin (alphaSMA) and myosin. Furthermore, we show that MSCs and SMCs cultured in the PEG hydrogels are able to proliferate and express matrix metalloproteinases for up to 21d in culture, the duration of the study. This study addresses the importance of the cellular microenvironment on cell fate, and proposes synthetic instructive biomaterials as a means to direct cell differentiation and circumvent scar tissue formation during bladder reconstruction.


Assuntos
Hidrogéis/metabolismo , Miócitos de Músculo Liso/fisiologia , Polietilenoglicóis/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Cadeias alfa de Integrinas/metabolismo , Cadeias beta de Integrinas/metabolismo , Células-Tronco Mesenquimais/enzimologia , Metaloendopeptidases/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Peptídeos/metabolismo , Fenótipo
20.
Biomaterials ; 29(12): 1958-66, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18242691

RESUMO

We here present an evaluation of the carrier performance of nanoparticles that are biofunctional, i.e. derivatized to provide a controlled biological activity, and environmentally responsive, since they respond to the presence of oxidants. In particular, we focus on the possibilities (a) to make the nanoparticles detectable and (b) to control their uptake in phagocytic cells, which determines their lifetime in vivo. We first describe techniques for labeling selectively the nanoparticle surface or bulk with imaging moieties (fluorophores or gold). We then show how surface composition and size, which are both controlled through the use of PEG derivatives, influence uptake by macrophages in vitro and blood circulation in vivo: for example, in vitro uptake is negligible for small (40 nm) particles but not for larger (100 nm) ones and, correspondingly, in vivo blood circulation half-life time decreases from 6.0 to 2.9 h. However, upon decoration with RGD peptides also the small particles can be significantly internalized.


Assuntos
Monócitos/metabolismo , Nanopartículas/química , Polipropilenos/química , Polipropilenos/farmacocinética , Sulfetos/química , Sulfetos/farmacocinética , Animais , Portadores de Fármacos , Teste de Materiais , Camundongos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA