Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Mol Med ; 55(12): 2553-2563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38036731

RESUMO

Oral diseases exhibit a significant association with metabolic syndrome, including dyslipidemia. However, direct evidence supporting this relationship is lacking, and the involvement of cholesterol metabolism in the pathogenesis of periodontitis (PD) has yet to be determined. In this study, we showed that high cholesterol caused periodontal inflammation in mice. Cholesterol homeostasis in human gingival fibroblasts was disrupted by enhanced uptake through C-X-C motif chemokine ligand 16 (CXCL16), upregulation of cholesterol hydroxylase (CH25H), and the production of 25-hydroxycholesterol (an oxysterol metabolite of CH25H). Retinoid-related orphan receptor α (RORα) mediated the transcriptional upregulation of inflammatory mediators; consequently, PD pathogenesis mechanisms, including alveolar bone loss, were stimulated. Our collective data provided direct evidence that hyperlipidemia is a risk factor for PD and supported that inhibition of the CXCL16-CH25H-RORα axis is a potential treatment mechanism for PD as a systemic disorder manifestation.


Assuntos
Perda do Osso Alveolar , Síndrome Metabólica , Periodontite , Humanos , Camundongos , Animais , Perda do Osso Alveolar/etiologia , Inflamação , Homeostase
2.
Exp Mol Med ; 49(8): e368, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28819322

RESUMO

Periodontal disease is one of the most prevalent chronic disorders worldwide. It is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss. Here, we focused on the role of adipokines, which are locally expressed by periodontal tissues, in the regulation of catabolic gene expression leading to periodontal inflammation. The expression of the nicotinamide phosphoribosyltransferase (NAMPT) adipokine was dramatically increased in inflamed human and mouse gingival tissues. NAMPT expression was also increased in lipopolysaccharide- and proinflammatory cytokine-stimulated primary cultured human gingival fibroblasts (GF). Adenovirus-mediated NAMPT (Ad-Nampt) overexpression upregulated the expression and activity of COX-2, MMP1 and MMP3 in human GF. The upregulation of IL-1ß- or Ad-Nampt-induced catabolic factors was significantly abrogated by the intracellular NAMPT (iNAMPT) inhibitor, FK866 or by the sirtuin (SIRT) inhibitor, nicotinamide (NIC). Recombinant NAMPT protein or extracellular NAMPT (eNAMPT) inhibition using a blocking antibody did not alter NAMPT target gene expression levels. Moreover, intragingival Ad-Nampt injection mediated periodontitis-like phenotypes including alveolar bone loss in mice. SIRT2, a part of the SIRT family, was positively associated with NAMPT actions in human GF. Furthermore, in vivo inhibition of the NAMPT-NAD+-SIRT axis by NIC injection in mice ameliorated the periodontal inflammation and alveolar bone erosion caused by intragingival injection of Ad-Nampt. Our findings indicate that NAMPT is highly upregulated in human GF, while its enzymatic activity acts as a crucial mediator of periodontal inflammation and alveolar bone destruction via regulation of COX-2, MMP1, and MMP3 levels.


Assuntos
Ciclo-Oxigenase 2/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Expressão Gênica , Gengiva/patologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Periodontite/genética , Adipocinas/metabolismo , Adulto , Perda do Osso Alveolar/metabolismo , Animais , Citocinas/genética , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Niacinamida/farmacologia , Nicotinamida Fosforribosiltransferase/genética , Piperazinas/farmacologia , Cultura Primária de Células , Sirtuína 2/genética , Sirtuína 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA