Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nanotechnology ; 25(42): 425103, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25277401

RESUMO

Enhancing therapeutic efficacy is essential for successful treatment of chemoresistant cancers such as metastatic hormone-refractory prostate cancer (HRPC). To improve the efficacy of doxorubicin (DOX) for treating chemoresistant disease, the feasibility of using nanodiamond (ND) particles was investigated. Utilizing the pH responsive properties of ND, a novel protocol for complexing NDs and DOX was developed using a pH 8.5 coupling buffer. The DOX loading efficiency, loading on the NDs, and pH responsive release characteristics were determined utilizing UV-Visible spectroscopy. The effects of the ND-DOX on HRPC cell line PC3 were evaluated with MTS and live/dead cell viability assays. ND-DOX displayed exceptional loading efficiency (95.7%) and drug loading on NDs (23.9 wt%) with optimal release at pH 4 (80%). In comparison to treatment with DOX alone, cell death significantly increased when cells were treated with ND-DOX complexes demonstrating a 50% improvement in DOX efficacy. Of the tested treatments, ND-DOX with 2.4 µg mL(-1) DOX exhibited superior efficacy (60% cell death). ND-DOX with 1.2 µg mL(-1) DOX achieved 42% cell death, which was comparable to cell death in response to 2.4 µg mL(-1) of free DOX, suggesting that NDs aid in decreasing the DOX dose necessary to achieve a chemotherapeutic efficacy. Due to its enhanced efficacy, ND-DOX can be used to successfully treat HRPC and potentially decrease the clinical side effects of DOX.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanodiamantes/administração & dosagem , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/química , Humanos , Masculino , Nanodiamantes/química , Nanodiamantes/ultraestrutura
2.
Nanoscale ; 15(7): 3461-3474, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723042

RESUMO

Vascular insults can create an inflammatory cascade involving endothelial cell, smooth muscle cell, and macrophage activation which can eventually lead to vascular disease such as atherosclerosis. Several studies have identified microRNA 146a's (miR-146a) anti-inflammatory potential based on its role in regulating the nuclear factor kappa beta (NF-κß) pathway. Therefore, in this study, we introduced exogenous miR-146a encapsulated by liposomes to lipopolysaccharide (LPS) stimulated vascular cells and macrophages to reduce inflammatory responses. First, the miR-146a encapsulated liposomes showed uniform size (radius 96.4 ± 4.22 nm) and round shape, long term stability (at least two months), high encapsulation efficiency (69.73 ± 0.07%), and were well transfected to human aortic endothelial cells (HAECs), human aortic smooth muscle cells (SMCs), and human differentiated monocytes (U937 cells). In addition, we demonstrated that miR-146a encapsulated liposomes reduced vascular inflammation responses in HAECs and SMCs through inhibition of ICAM-1 expression and decreased monocyte adhesion. In macrophages, miR-146a liposome treatment demonstrated decreased production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß), as well as reduced oxidized low-density lipoprotein (ox-LDL) uptake and foam cell formation. Thus, based on these results, miR-146a encapsulated liposomes may be promising for reducing vascular inflammation by targeting its multiple associated mediators.


Assuntos
Células Espumosas , MicroRNAs , Humanos , Células Endoteliais/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Lipossomos , Ativação de Macrófagos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo
3.
Nat Commun ; 14(1): 7687, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001080

RESUMO

Guided bone regeneration aided by the application of occlusive membranes is a promising therapy for diverse inflammatory periodontal diseases. Symbiosis, homeostasis between the host microbiome and cells, occurs in the oral environment under normal, but not pathologic, conditions. Here, we develop a symbiotically integrating occlusive membrane by mimicking the tooth enamel growth or multiple nucleation biomineralization processes. We perform human saliva and in vivo canine experiments to confirm that the symbiotically integrating occlusive membrane induces a symbiotic healing environment. Moreover, we show that the membrane exhibits tractability and enzymatic stability, maintaining the healing space during the entire guided bone regeneration therapy period. We apply the symbiotically integrating occlusive membrane to treat inflammatory-challenged cases in vivo, namely, the open and closed healing of canine premolars with severe periodontitis. We find that the membrane promotes symbiosis, prevents negative inflammatory responses, and improves cellular integration. Finally, we show that guided bone regeneration therapy with the symbiotically integrating occlusive membrane achieves fast healing of gingival soft tissue and alveolar bone.


Assuntos
Perda do Osso Alveolar , Periodontite , Humanos , Regeneração Tecidual Guiada Periodontal , Cicatrização/fisiologia , Gengiva , Membranas Artificiais , Regeneração Óssea/fisiologia
4.
ACS Appl Bio Mater ; 4(6): 4917-4924, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007040

RESUMO

Blood clots (90%) originate from the left atrial appendage (LAA) in non-valvular atrial fibrillation patients and are a major cause of embolic stroke. Long-term anticoagulation therapy has been used to prevent thrombus formation, but its use is limited in patients at a high risk for bleeding complications. Thus, left atrial appendage closure (LAAC) devices for LAA occlusion are well-established as an alternative to the anticoagulation therapy. However, the anticoagulation therapy is still required for at least 45 days post-implantation to bridge the time until complete LAA occlusion by neoendocardium coverage of the device. In this study, we applied an endothelium-mimicking nanomatrix to the LAAC device membrane for delivery of nitric oxide (NO) to enhance endothelialization, with the goal of possibly being able to reduce the duration of the anticoagulation therapy. The nanomatrix was uniformly coated on the LAAC device membranes and provided sustained release of NO for up to 1 month in vitro. In addition, the nanomatrix coating promoted endothelial cell proliferation and reduced platelet adhesion compared to the uncoated device membranes in vitro. The nanomatrix-coated and uncoated LAAC devices were then deployed in a canine LAA model for 22 days as a pilot study. All LAAC devices were not completely covered by neoendocardium 22 days post-implantation. However, histology image analysis showed that the nanomatrix-coated LAAC device had thicker neoendocardium coverage compared to the uncoated device. Therefore, our in vitro and in vivo results indicate that the nanomatrix coating has the potential to enhance endothelialization on the LAAC device membrane, which could improve patient outcomes by shortening the need for extended anticoagulation treatment.


Assuntos
Apêndice Atrial/cirurgia , Procedimentos Cirúrgicos Cardíacos/instrumentação , Endotélio/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Animais , Anticoagulantes/administração & dosagem , Aorta/citologia , Aspirina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cães , Células Endoteliais/efeitos dos fármacos , Endotélio/fisiologia , Humanos , Membranas Artificiais , Óxido Nítrico/administração & dosagem , Peptídeos/administração & dosagem , Adesividade Plaquetária/efeitos dos fármacos , Varfarina/administração & dosagem
5.
J Mater Chem B ; 8(14): 2814-2825, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163093

RESUMO

We report a novel and facile organosilane plasma polymerization method designed to improve the surface characteristics of poly(tetrafluoroethylene) (PTFE). We hypothesized that the polymerized silane coating would provide an adhesive surface for endothelial cell proliferation due to a large number of surface hydroxyl groups, while the large polymer networks on the surface of PTFE would hinder platelet attachment. The plasma polymerized PTFE surfaces were then systematically characterized via different analytical techniques such as FTIR, XPS, XRD, Contact angle, and SEM. The key finding of the characterization is the time-dependent deposition of an organosilane layer on the surface of PTFE. This layer was found to provide favorable surface properties to PTFE such as a very high surface oxygen content, high hydrophilicity and improved surface mechanics. Additionally, in vitro cellular studies were conducted to determine the bio-interface properties of the plasma-treated and untreated PTFE. The important results of these experiments were rapid endothelial cell growth and decreased platelet attachment on the plasma-treated PTFE compared to untreated PTFE. Thus, this new surface modification technique could potentially address the current challenges associated with PTFE for blood contact applications, specifically poor endothelial cell growth and risk of thrombosis.


Assuntos
Materiais Biocompatíveis/farmacologia , Compostos de Organossilício/farmacologia , Politetrafluoretileno/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Plaquetas/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Estrutura Molecular , Compostos de Organossilício/síntese química , Compostos de Organossilício/química , Tamanho da Partícula , Adesividade Plaquetária/efeitos dos fármacos , Polimerização , Propriedades de Superfície
6.
J Biomed Mater Res A ; 104(4): 1017-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26567028

RESUMO

Electrospinning has been widely used to fabricate scaffolds imitating the structure of natural extracellular matrix (ECM). However, conventional electrospinning produces tightly compacted nanofiber layers with only small superficial pores and a lack of bioactivity, which limit the usefulness of electrospinning in biomedical applications. Thus, a porous poly(ε-caprolactone) (PCL)/gelatin composite electrospun scaffold with crater-like structures was developed. Porous crater-like structures were created on the scaffold by a gas foaming/salt leaching process; this unique fiber structure had more large pore areas and higher porosity than the conventional electrospun fiber network. Various ratios of PCL/gelatin (concentration ratios: 100/0, 75/25, and 50/50) composite electrospun scaffolds with and without crater-like structures were characterized by their microstructures, surface chemistry, degradation, mechanical properties, and ability to facilitate cell growth and infiltration. The combination of PCL and gelatin endowed the scaffold with both structural stability of PCL and bioactivity of gelatin. All ratios of scaffolds with crater-like structures showed fairly similar surface chemistry, degradation rates, and mechanical properties to equivalent scaffolds without crater-like structures; however, craterized scaffolds displayed higher human mesenchymal stem cell (hMSC) proliferation and infiltration throughout the scaffolds after 7-day culture. Therefore, these results demonstrated that PCL/gelatin composite electrospun scaffolds with crater-like structures can provide a structurally and biochemically improved three-dimensional ECM-mimicking microenvironment.


Assuntos
Gelatina/química , Nanofibras/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Células-Tronco Mesenquimais/citologia , Nanofibras/ultraestrutura , Porosidade
7.
Acta Biomater ; 41: 224-34, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27286678

RESUMO

UNLABELLED: For three-dimensional tissue engineering scaffolds, the major challenges of hydrogels are poor mechanical integrity and difficulty in handling during implantation. In contrast, electrospun scaffolds provide tunable mechanical properties and high porosity; but, are limited in cell encapsulation. To overcome these limitations, we developed a "hybrid nanosack" by combination of a peptide amphiphile (PA) nanomatrix gel and an electrospun poly (ε-caprolactone) (ePCL) nanofiber sheet with porous crater-like structures. This hybrid nanosack design synergistically possessed the characteristics of both approaches. In this study, the hybrid nanosack was applied to enhance local angiogenesis in the omentum, which is required of tissue engineering scaffolds for graft survival. The ePCL sheet with porous crater-like structures improved cell and blood vessel penetration through the hybrid nanosack. The hybrid nanosack also provided multi-stage fibroblast growth factor-2 (FGF-2) release kinetics for stimulating local angiogenesis. The hybrid nanosack was implanted into rat omentum for 14days and vascularization was analyzed by micro-CT and immunohistochemistry; the data clearly demonstrated that both FGF-2 delivery and porous crater-like structures work synergistically to enhance blood vessel formation within the hybrid nanosack. Therefore, the hybrid nanosack will provide a new strategy for engineering scaffolds to achieve graft survival in the omentum by stimulating local vascularization, thus overcoming the limitations of current strategies. STATEMENT OF SIGNIFICANCE: For three-dimensional tissue engineering scaffolds, the major challenges of hydrogels are poor mechanical integrity and difficulty in handling during implantation. In contrast, electrospun scaffolds provide tunable mechanical properties and high porosity; but, are limited in cell encapsulation. To overcome these limitations, we developed a "hybrid nanosack" by combination of a peptide amphiphile (PA) nanomatrix gel and an electrospun poly (ε-caprolactone) (ePCL) nanofiber sheet with porous crater-like structures. This design synergistically possessed the characteristics of both approaches. In this study, the hybrid nanosack was applied to enhance local angiogenesis in the omentum, which is required of tissue engineering scaffolds for graft survival. The hybrid nanosack was implanted into rat omentum for 14days and vascularization was analyzed by micro-CT and immunohistochemistry. We demonstrate that both FGF-2 delivery and porous crater-like structures work synergistically to enhance blood vessel formation within the hybrid nanosack. Therefore, the hybrid nanosack will provide a new strategy for engineering scaffolds to achieve graft survival in the omentum by stimulating local vascularization, thus overcoming the limitations of current strategies.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Omento/irrigação sanguínea , Alicerces Teciduais/química , Animais , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Cinética , Omento/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Poliésteres/farmacologia , Porosidade , Ratos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA