Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(49): 17385-9, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422476

RESUMO

A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.


Assuntos
Anti-Infecciosos/administração & dosagem , Seda/química , Implantes Absorvíveis , Animais , Infecções Bacterianas/prevenção & controle , Biopolímeros/química , Sistemas de Liberação de Medicamentos , Eletrônica , Desenho de Equipamento , Equipamentos e Provisões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ondas de Rádio , Infecções Estafilocócicas , Staphylococcus aureus , Temperatura , Termodinâmica , Tecnologia sem Fio
2.
Nano Lett ; 15(5): 2801-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25706246

RESUMO

Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.


Assuntos
Técnicas Biossensoriais/métodos , Elastômeros/química , Nanotecnologia/métodos , Silício/química , Eletrônica , Nanoestruturas/química , Semicondutores
3.
Adv Healthc Mater ; : e2401260, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38953344

RESUMO

Polyetheretherketone (PEEK), a bioinert polymer known for its mechanical properties similar to bone, is capable of averting stress shielding. Due to these attributes, it finds applications in diverse fields like orthopedics, encompassing cervical disc replacement for the neck and spine, along with dentistry and plastic surgery. However, due to insufficient bonding with bone, various methods such as hydroxyapatite (HA) coating on the surface are attempted. Nonetheless, the interface between the polymer and ceramic, two different materials, tended to delaminate after transplantation, posing challenges in preventing implant escape or dislodgement. This research delves into the laser-driven hydroxyapatite penetration-synthesis technique. Differing from conventional coating methods that bond layers of dissimilar materials like HA and PEEK, this technology focuses on synthesizing and infiltrating ionized HA within the PEEK substrate resulting in an interface-free HA-PEEK surface. Conversely, HA-PEEK with this technology applied achieves complete, gap-free direct bone-implant integration.  Our research involved the analysis of various aspects. By means of these, we quantitatively assesed the enhanced bone bonding characteristics of HA-PEEK surfaces treated with this approach and offered and explanation for the mechanism responsible for direct bone integration.

4.
Biosens Bioelectron ; 254: 116222, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518560

RESUMO

Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.


Assuntos
Técnicas Biossensoriais , Elastômeros , Elastômeros/química , Materiais Biocompatíveis/química , Implantes Absorvíveis , Polímeros/química , Poliésteres/química
5.
Small ; 9(20): 3398-404, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23606533

RESUMO

The combined use of ZnO, Mg, MgO, and silk provides routes to classes of thin-film transistors and mechanical energy harvesters that are soluble in water and biofluids. Experimental and theoretical studies of the operational aspects and dissolution properties of this type of transient electronics technology illustrate its various capabilities. Application opportunities range from resorbable biomedical implants, to environmentally dissolvable sensors, and degradable consumer electronics.


Assuntos
Materiais Biocompatíveis/química , Eletrônica/instrumentação , Fontes Geradoras de Energia , Óxido de Zinco/química , Eletricidade , Cinética , Solubilidade , Transistores Eletrônicos , Água/química
6.
Nat Commun ; 14(1): 2263, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081012

RESUMO

As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Elastômeros/química , Eletrônica , Próteses e Implantes
7.
ACS Nano ; 15(12): 19310-19320, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34843199

RESUMO

The lifetime of transient electronic components can be programmed via the use of encapsulation/passivation layers or of on-demand, stimuli-responsive polymers (heat, light, or chemicals), but yet most research is limited to slow dissolution rate, hazardous constituents, or byproducts, or complicated synthesis of reactants. Here we present a physicochemical destruction system with dissolvable, nontoxic materials as an efficient, multipurpose platform, where chemically produced bubbles rapidly collapse device structures and acidic molecules accelerate dissolution of functional traces. Extensive studies of composites based on biodegradable polymers (gelatin and poly(lactic-co-glycolic acid)) and harmless blowing agents (organic acid and bicarbonate salt) validate the capability for the desired system. Integration with wearable/recyclable electronic components, fast-degradable device layouts, and wireless microfluidic devices highlights potential applicability toward versatile/multifunctional transient systems. In vivo toxicity tests demonstrate biological safety of the proposed system.


Assuntos
Eletrônica , Polímeros
8.
Adv Mater ; 32(51): e2002211, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32974973

RESUMO

Transient electronics refers to an emerging class of advanced technology, defined by an ability to chemically or physically dissolve, disintegrate, and degrade in actively or passively controlled fashions to leave environmentally and physiologically harmless by-products in environments, particularly in bio-fluids or aqueous solutions. The unusual properties that are opposite to operational modes in conventional electronics for a nearly infinite time frame offer unprecedented opportunities in research areas of eco-friendly electronics, temporary biomedical implants, data-secure hardware systems, and others. This review highlights the developments of transient electronics, including materials, manufacturing strategies, electronic components, and transient kinetics, along with various potential applications.


Assuntos
Materiais Biocompatíveis , Equipamentos e Provisões Elétricas
9.
ACS Nano ; 13(10): 11022-11033, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31508938

RESUMO

Self-assembly of peptides containing both l- and d-isomers often results in nanostructures with enhanced properties compared to their enantiomeric analogues, such as faster kinetics of formation, higher mechanical strength, and enzymatic stability. However, occurrence and consequences of the heterochiral assembly in the cellular microenvironment are unknown. In this study, we monitored heterochiral assembly of amphiphilic peptides inside the cell, specifically mitochondria of cancer cells, resulting in nanostructures with refined morphological and biological properties owing to the superior interaction between the backbones of opposite chirality. We have designed a mitochondria penetrating tripeptide containing a diphenyl alanine building unit, named as Mito-FF due to their mitochondria targeting ability. The short peptide amphiphile, Mito-FF co-assembled with its mirror pair, Mito-ff, induced superfibrils of around 100 nm in diameter and 0.5-1 µm in length, while enantiomers formed only narrow fibers of 10 nm in diameter. The co-administration of Mito-FF and Mito-ff in the cell induced drastic mitochondrial disruption both in vitro and in vivo. The experimental and theoretical analyses revealed that pyrene capping played a major role in inducing superfibril morphology upon the co-assembly of racemic peptides. This work shows the impact of chirality control over the peptide self-assembly inside the biological system, thus showing a potent strategy for fabricating promising peptide biomaterials by considering chirality as a design modality.


Assuntos
Mitocôndrias/efeitos dos fármacos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Células HT29 , Células HeLa , Humanos , Camundongos , Mitocôndrias/química , Nanoestruturas/uso terapêutico , Neoplasias/genética , Neoplasias/patologia , Peptídeos/química , Fenômenos Físicos , Estereoisomerismo , Tensoativos/química , Tensoativos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Adv Healthc Mater ; 7(24): e1801071, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30450726

RESUMO

A strategy of materials synthesis, characteristic evaluations, and manufacturing process for a mechanically elastic, biologically safe silicon-based dopamine detector that is designed to be completely transient, i.e., dissolved in water and/or biofluids, potentially in the brain after a desired period of operation, is introduced. Use of inexpensive, bioresorbable iron (Fe)-based nanoparticles (NPs) is one of the attractive choices for efficient catalytic oxidation of dopamine as an alternative for noble, nontransient platinum (Pt) nanoparticles, based on extensive studies of synthesized materials and catalytic reactions. Arrays of transient dopamine sensors validate electrochemical functionality to determine physiological levels of dopamine and to selectively sense dopamine in a variety of neurotransmitters, illuminating feasibilities for a higher level of soft, transient electronic implants integrated with other components of overall system.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas/métodos , Ferro/química , Nanopartículas/química , Silício/química , Implantes Absorvíveis , Materiais Biocompatíveis/química , Catálise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Análise em Microsséries , Oxirredução
11.
Adv Mater ; 27(1): 47-52, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25357247

RESUMO

Materials and device designs are presented for electronic systems that undergo functional transformation by a controlled time sequence in the dissolution of active materials and/or encapsulation layers. Demonstration examples include various biocompatible, multifunctional systems with autonomous behavior defined by materials selection and layout.


Assuntos
Materiais Biocompatíveis/química , Equipamentos e Provisões Elétricas , Desenho de Equipamento , Compostos de Magnésio/química , Nanoestruturas/química , Silício/química , Seda/química , Água/química
12.
ACS Appl Mater Interfaces ; 7(17): 9297-305, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25867894

RESUMO

Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Germânio/química , Germânio/toxicidade , Semicondutores , Silício/química , Silício/toxicidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Cristalização/métodos , Fontes de Energia Elétrica , Eletrônica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Germânio/efeitos da radiação , Luz , Teste de Materiais , Energia Solar
13.
Adv Mater ; 26(43): 7371-7, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25244671

RESUMO

Biodegradable printed circuit boards based on water-soluble materials are demonstrated. These systems can dissolve in water within 10 mins to yield end-products that are environmentally safe. These and related approaches have the potential to reduce hazardous waste streams associated with electronics disposal.


Assuntos
Equipamentos e Provisões Elétricas , Plásticos Biodegradáveis/química , Condutividade Elétrica , Desenho de Equipamento , Metais/química , Microscopia Eletrônica de Varredura , Impressão/métodos , Temperatura , Água/química , Tecnologia sem Fio
14.
Adv Mater ; 26(13): 1992-2000, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24677058

RESUMO

We review recent progress in a class of silicon-based electronics that is capable of complete, controlled dissolution when immersed in water or bio-fluids. This type of technology, referred to in a broader sense as transient electronics, has potential applications in resorbable biomedical devices, eco-friendly electronics, environmental sensors, secure hardware systems and others. New results reported here include studies of the kinetics of hydrolysis of nanomembranes of single crystalline silicon in bio-fluids and aqueous solutions at various pH levels and temperatures. Evaluations of toxicity using live animal models and test coupons of transient electronic materials provide some evidence of their biocompatibility, thereby suggesting potential for use in bioresorbable electronic implants.


Assuntos
Semicondutores , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Hidrólise , Silício/química , Silício/metabolismo , Silício/toxicidade , Água/química
15.
Adv Mater ; 26(45): 7637-42, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25332056

RESUMO

Triggerable transient electronics are demonstrated with the use of a metastable poly(phthalaldehyde) polymer substrate and encapsulant. The rate of degradation is controlled by the concentration of the photo-acid generator and UV irradiance. This work expands on the materials that can be used for transient electronics by demonstrating transience in response to a preselected trigger without the need for solution-based degradation.


Assuntos
Aldeídos/química , Equipamentos e Provisões Elétricas , Polímeros/química , Impedância Elétrica , Magnésio/química , Nanoestruturas/química , Processos Fotoquímicos , Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
16.
ACS Nano ; 8(6): 5843-51, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24684516

RESUMO

Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.


Assuntos
Materiais Biocompatíveis/química , Eletroquímica/métodos , Nanopartículas Metálicas/química , Nanoestruturas/química , Silício/química , Linhagem Celular Tumoral , Cristalização , Dimetilpolisiloxanos/química , Eletrônica , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Íons , Cinética , Teste de Materiais , Membranas Artificiais , Microscopia , Nanotecnologia/métodos , Temperatura
17.
Adv Mater ; 25(26): 3526-31, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23681956

RESUMO

Materials, device designs and manufacturing approaches are presented for classes of RF electronic components that are capable of complete dissolution in water or biofluids. All individual passive/active components as well as system-level examples such as wireless RF energy harvesting circuits exploit active materials that are biocompatible. The results provide diverse building blocks for physically transient forms of electronics, of particular potential value in bioresorbable medical implants with wireless power transmission and communication capabilities.


Assuntos
Materiais Biocompatíveis , Equipamentos e Provisões Elétricas , Ondas de Rádio , Materiais Biocompatíveis/química , Capacitância Elétrica , Impedância Elétrica , Eletrodos , Solubilidade , Transistores Eletrônicos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA