Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nanotechnology ; 27(10): 105601, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26861770

RESUMO

A stable, biocompatible and exquisite SPIONs-PEG-HER targeting complex was developed. Initially synthesized superparamagnetic iron oxide nanoparticles (SPIONs) were silanized using 3-aminopropyltrimethoxysilane (APS) as the coupling agent in order to allow the covalent bonding of polyethylene glycol (PEG) to the SPIONs to improve the biocompatibility of the SPIONs. SPIONs-PEG were then conjugated with herceptin (HER) to permit the SPIONs-PEG-HER to target the specific receptors expressed over the surface of the HER2+ metastatic breast cancer cells. Each preparation step was physico-chemically analyzed and characterized by a number of analytical methods including AAS, FTIR spectroscopy, XRD, FESEM, TEM, DLS and VSM. The biocompatibility of SPIONs-PEG-HER was evaluated in vitro on HSF-1184 (human skin fibroblast cells), SK-BR-3 (human breast cancer cells, HER+), MDA-MB-231 (human breast cancer cells, HER-) and MDA-MB-468 (human breast cancer cells, HER-) cell lines by performing MTT and trypan blue assays. The hemolysis analysis results of the SPIONs-PEG-HER and SPIONs-PEG did not indicate any sign of lysis while in contact with erythrocytes. Additionally, there were no morphological changes seen in RBCs after incubation with SPIONs-PEG-HER and SPIONs-PEG under a light microscope. The qualitative and quantitative in vitro targeting studies confirmed the high level of SPION-PEG-HER binding to SK-BR-3 (HER2+ metastatic breast cancer cells). Thus, the results reflected that the SPIONs-PEG-HER can be chosen as a favorable biomaterial for biomedical applications, chiefly magnetic hyperthermia, in the future.


Assuntos
Neoplasias da Mama/metabolismo , Compostos Férricos/síntese química , Nanopartículas de Magnetita/química , Polietilenoglicóis/química , Receptor ErbB-2/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Difusão Dinâmica da Luz , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Hemólise/fisiologia , Humanos , Técnicas In Vitro , Teste de Materiais
2.
Appl Microbiol Biotechnol ; 98(3): 987-1000, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292125

RESUMO

Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF - a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail.


Assuntos
Biomassa , Lignina/metabolismo , Ácido Succínico/metabolismo , Fermentação , Hidrólise
3.
Mater Sci Eng C Mater Biol Appl ; 103: 109769, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349444

RESUMO

Non-covalent electrostatic interaction between amide nitrogen and carbonyl carbon of shorter chain length of polyvinylpyrrolidone (PVP-k25) was developed with in-house carboxylic oxidized multiwall carbon nanotubes (O-MWCNT) and then blended with Polyethersulfone (PES) polymer. FTIR analysis was utilized to confirm bonding nature of nano-composites (NCs) of O-MWCNT/PVP-k25 and casting membranes. Non-solvent induces phase separation process developed regular finger-like channels in composite membranes whereas pristine PES exhibited spongy entities as studied by cross sectional analysis report of FESEM. Further, FESEM instrument was also utilized to observe the dispersion of O-MWCNT/PVP based nanocomposite (NCs) with PES and membranes leaching phenomena analysis. Contact angle experiments described 24% improvement of hydrophilic behaviour, leaching ratio of additives was reduced to 1.89%, whereas water flux enhanced up to 6 times. Bovine serum albumin (BSA) and lysozyme based antifouling analysis shown up to 25% improvement, whereas 84% of water flux was regained after protein fouling than pristine PES. Anticoagulant activity was reported by estimating prothrombin, thrombin, plasma re-calcification times and production of fibrinogen cluster with platelets-adhesions photographs and hemolysis experiments. Composite membranes exhibited 3.4 and 3 times better dialysis clearance ratios of urea and creatinine solutes as compared to the raw PES membrane.


Assuntos
Anticoagulantes/química , Membranas Artificiais , Nanocompostos/química , Nanotubos/química , Polímeros/química , Diálise Renal/instrumentação , Sulfonas/química , Humanos
4.
J Biomed Mater Res A ; 107(3): 513-525, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30484939

RESUMO

This study focused to optimize the performance of polyethersulfone (PES) hemodialysis (HD) membrane using carboxylic functionalized multiwall carbon nanotubes (c-MWCNT) and lower molecular weight grade of polyvinylpyrrolidone (PVP-k30). Initially, MWCNT were chemically functionalized by acid treatment and nanocomposites (NCs) of PVP-k30 and c-MWCNT were formed and subsequently blended with PES polymer. The spectra of FTIR of the HD membranes revealed that NCs has strong hydrogen bonding and their addition to PES polymer improved the capillary system of membranes as confirmed by Field Emission Scanning Electron Microscope (FESEM) and leaching of the additive decreased to 2% and hydrophilicity improved to 22%. The pore size and porosity of NCs were also enhanced and rejection rate was achieved in the establish dialysis range (<60 kDa). The antifouling studies had shown that NCs membrane exhibited 30% less adhesion of protein with 80% flux recovery ratio. The blood compatibility assessment disclosed that NCs based membranes showed prolonged thrombin and prothrombin clotting times, lessened production of fibrinogen cluster, and greatly suppressed adhesion of blood plasma than a pristine PES membrane. The results also unveiled that PVP-k30/NCs improved the surface properties of the membrane and the urea and creatinine removal increased to 72% and 75% than pure PES membranes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 513-525, 2019.


Assuntos
Teste de Materiais , Membranas Artificiais , Nanocompostos/química , Nanotubos de Carbono/química , Povidona/química , Diálise Renal/instrumentação , Humanos
5.
Mater Sci Eng C Mater Biol Appl ; 76: 616-627, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482571

RESUMO

Tissue engineering (TE) is an advanced principle to develop a neotissue that can resemble the original tissue characteristics with the capacity to grow, to repair and to remodel in vivo. This research proposed the optimization and development of nanofiber based scaffold using the new mixture of maghemite (γ-Fe2O3) filled poly-l-lactic acid (PLLA)/thermoplastic polyurethane (TPU) for tissue engineering heart valve (TEHV). The chemical, structural, biological and mechanical properties of nanofiber based scaffold were characterized in terms of morphology, porosity, biocompatibility and mechanical behaviour. Two-level Taguchi experimental design (L8) was performed to optimize the electrospun mats in terms of elastic modulus using uniaxial tensile test where the studied parameters were flow rate, voltage, percentage of maghemite nanoparticles in the content, solution concentration and collector rotating speed. Each run was extended with an outer array to consider the noise factors. The signal-to-noise ratio analysis indicated the contribution percent as follow; Solution concentration>voltage>maghemite %>rotating speed>flow rate. The optimum elastic modulus founded to be 28.13±0.37MPa in such a way that the tensile strain was 31.72% which provided desirability for TEHV. An empirical model was extracted and verified using confirmation test. Furthermore, an ultrafine quality of electrospun nanofibers with 80.32% porosity was fabricated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and cell attachment using human aortic smooth muscle cells exhibited desirable migration and proliferation over the electrospun mats. The interaction between blood content and the electrospun mats indicated a mutual adaption in terms of clotting time and hemolysis percent. Overall, the fabricated scaffold has the potential to provide the required properties of aortic heart valve.


Assuntos
Nanofibras , Compostos Férricos , Valvas Cardíacas , Humanos , Poliésteres , Poliuretanos , Engenharia Tecidual , Alicerces Teciduais
6.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 520-534, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770924

RESUMO

The use of electrospinning process in fabricating tissue engineering scaffolds has received great attention in recent years due to its simplicity. The nanofibers produced via electrospinning possessed morphological characteristics similar to extracellular matrix of most tissue components. Porosity plays a vital role in developing tissue engineering scaffolds because it influences the biocompatibility performance of the scaffolds. In this study, maghemite (γ-Fe2O3) was mixed with polyvinyl alcohol (PVA) and subsequently electrospun to produce nanofibers. Five factors; nanoparticles content, voltage, flow rate, spinning distance, and rotating speed were varied to produce the electrospun nanofibrous mats with high porosity value. Empirical model was developed using response surface methodology to analyze the effect of these factors to the porosity. The results revealed that the optimum porosity (90.85%) was obtained using 5% w/v nanoparticle content, 35kV of voltage, 1.1ml/h volume flow rate of solution, 8cm spinning distance and 2455rpm of rotating speed. The empirical model was verified successfully by performing confirmation experiments. The properties of optimum PVA/γ-Fe2O3 nanofiber mats such as fiber diameter, mechanical properties, and contact angle were investigated. In addition, cytocompatibility test, in vitro degradation rate, and MTT assay were also performed. Results revealed that high porosity biodegradable γ-Fe2O3/polyvinyl alcohol nanofiber mats have low mechanical properties but good degradation rates and cytocompatibility properties. Thus, they are suitable for low load bearing biomedical application or soft tissue engineering scaffold.


Assuntos
Materiais Biocompatíveis/síntese química , Tecnologia Biomédica/métodos , Compostos Férricos/química , Nanofibras/química , Álcool de Polivinil/síntese química , Engenharia Tecidual/métodos , Análise de Variância , Proliferação de Células , Sobrevivência Celular , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Humanos , Modelos Teóricos , Nanofibras/ultraestrutura , Tamanho da Partícula , Álcool de Polivinil/química , Porosidade , Reprodutibilidade dos Testes
7.
Proc Inst Mech Eng H ; 230(8): 739-49, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27194535

RESUMO

Electrospinning is a simple and efficient process in producing nanofibers. To fabricate nanofibers made of a blend of two constituent materials, co-axial electrospinning method is an option. In this method, the constituent materials contained in separate barrels are simultaneously injected using two syringe nozzles arranged co-axially and the materials mix during the spraying process forming core and shell of the nanofibers. In this study, co-axial electrospinning method is used to fabricate nanofibers made of polyvinyl alcohol and maghemite (γ-Fe2O3). The concentration of polyvinyl alcohol and amount of maghemite nanoparticle loading were varied, at 5 and 10 w/v% and at 1-10 v/v%, respectively. The mechanical properties (strength and Young's modulus), porosity, and biocompatibility properties (contact angle and cell viability) of the electrospun mats were evaluated, with the same mats fabricated by regular single-nozzle electrospinning method as the control. The co-axial electrospinning method is able to fabricate the expected polyvinyl alcohol/maghemite nanofiber mats. It was noticed that the polyvinyl alcohol/maghemite electrospun mats have lower mechanical properties (i.e. strength and stiffness) and porosity, more hydrophilicity (i.e. lower contact angle), and similar cell viability compared to the mats fabricated by single-nozzle electrospinning method.


Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Álcool de Polivinil/química , Materiais Biocompatíveis/síntese química , Fenômenos Biomecânicos , Linhagem Celular , Sobrevivência Celular , Humanos , Teste de Materiais , Nanofibras/química , Nanofibras/ultraestrutura , Nanotecnologia/instrumentação
8.
Mater Sci Eng C Mater Biol Appl ; 69: 1147-58, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612812

RESUMO

Engineering of a physiologically compatible, stable and targetable SPIONs-CA-FA formulation was reported. Initially fabricated superparamagnetic iron oxide nanoparticles (SPIONs) were coated with citric acid (CA) to hamper agglomeration as well as to ameliorate biocompatibility. Folic acid (FA) as a targeting agent was then conjugated to the citric acid coated SPIONs (SPIONs-CA) for targeting the specific receptors expressed on the FAR+ cancer cells. Physiochemical characterizations were then performed to assure required properties like stability, size, phase purity, surface morphology, chemical integrity and magnetic properties. In vitro evaluations (MTT assay) were performed on HeLa, HSF 1184, MDA-MB-468 and MDA-MB-231cell lines to ensure the biocompatibility of SPIONs-CA-FA. There were no morphological changes and lysis in contact with erythrocytes recorded for SPIONs-CA-FA and SPIONs-CA. High level of SPIONs-CA-FA binding to FAR+ cell lines was assured via qualitative and quantitative in vitro binding studies. Hence, SPIONs-CA-FA was introduced as a promising tool for biomedical applications like magnetic hyperthermia and drug delivery. The in vitro findings presented in this study need to be compared with those of in vivo studies.


Assuntos
Materiais Biocompatíveis/química , Dextranos/química , Receptores de Folato com Âncoras de GPI/metabolismo , Nanopartículas de Magnetita/química , Materiais Biocompatíveis/farmacologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/química , Ácido Fólico/química , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Mater Sci Eng C Mater Biol Appl ; 56: 574-92, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249629

RESUMO

Polyethersulfone (PES) based membranes are used for dialysis, but exposure to blood can result in numerous interactions between the blood elements and the membrane. Adsorption and transformation of plasma proteins, activation of blood cells, adherence of platelets and thrombosis reactions against PES membrane can invoke severe blood reactions causing the increase rate of mortality and morbidity of hemodialysis (HD) patients. In order to minimize blood immune response, different biomimetic, zwitterionic, non-ionic, anticoagulant molecules and hydrophilic brushes were immobilized or blended with PES polymers. These additives modified the nature of the membrane, enhanced their biocompatibility and also increased the uremic waste dialysis properties. In this review, current perspectives of the different additives which are used with PES are highlighted in relation with PES membrane-associated blood reactions. The additive's purpose, compatibility, preparation techniques, methods of addition to polymer and influence on the chemistry and performance of hemodialysis membranes are described.


Assuntos
Células Sanguíneas/metabolismo , Proteínas Sanguíneas/metabolismo , Membranas Artificiais , Polímeros/química , Diálise Renal/métodos , Sulfonas/química , Animais , Células Sanguíneas/patologia , Humanos , Polímeros/efeitos adversos , Diálise Renal/efeitos adversos , Sulfonas/efeitos adversos
10.
Appl Radiat Isot ; 105: 105-113, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26275818

RESUMO

In this paper, both maghemite (γ-Fe2O3) and titanium oxide (TiO2) nanoparticles were synthesized and mixed in various ratios and embedded in PVA and alginate beads. Batch sorption experiments were applied for removal of barium ions from aqueous solution under sunlight using the beads. The process has been investigated as a function of pH, contact time, temperature, initial barium ion concentration and TiO2:γ-Fe2O3 ratios (1:10, 1:60 and 1). The recycling attributes of these beads were also considered. Furthermore, the results revealed that 99% of the Ba(II) was eliminated in 150min at pH 8 under sunlight. Also, the maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the process and reused for at least 7 times without significant losses of their initial properties. The reduction of Ba(II) with maghemite and titania PVA-alginate beads fitted the pseudo first order and second order Langmuir-Hinshelwood (L-H) kinetic model.


Assuntos
Bário/isolamento & purificação , Nanopartículas Metálicas , Resíduos Radioativos/análise , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Alginatos , Radioisótopos de Bário/isolamento & purificação , Compostos Férricos , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas de Magnetita/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Químicos , Processos Fotoquímicos , Álcool de Polivinil , Titânio , Poluentes Radioativos da Água/isolamento & purificação
11.
Mater Sci Eng C Mater Biol Appl ; 50: 234-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25746266

RESUMO

Magnetic nanofibers are composed of good dispersion of magnetic nanoparticles along an organic material. Magnetic nanofibers are potentially useful for composite reinforcement, bio-medical and tissue engineering. Nanofibers with the thinner diameter have to result in higher rigidity and tensile strength due to better alignments of lamellae along the fiber axis. In this study, the performance of electrospinning process was explained using response surface methodology (RSM) during fabrication of magnetic nanofibers using polyvinyl alcohol (PVA) as a shelter for (γ-Fe2O3) nanoparticles where the parameters investigated were flow rate, applied voltage, distance between needle and collector and collector rotating speed. The response variable was diameter distribution. The two parameters flow rate and applied voltage in primary evaluation were distinguished as significant factors. Central composite design was applied to optimize the variable of diameter distribution. Quadratic estimated model developed for diameter distribution indicated the optimum conditions to be flow rate of 0.25 ml/h at voltage of 45 kV while the distance and rotating speed are at 8 cm and 1500 rps respectively. The obtained model was verified successfully by the confirmation experiments.


Assuntos
Compostos Férricos/química , Fenômenos Magnéticos , Nanofibras/química , Nanopartículas/química , Álcool de Polivinil/química , Engenharia Tecidual/métodos , Análise de Variância , Modelos Teóricos , Tamanho da Partícula , Probabilidade
12.
J Mech Behav Biomed Mater ; 49: 90-104, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26002419

RESUMO

Maghemite (γ-Fe2O3) nanoparticle with its unique magnetic properties is recently known to enhance the cell growth rate. In this study, γ-Fe2O3 is mixed into polyvinyl alcohol (PVA) matrix and then electrospun to form nanofibers. Design of experiments was used to determine the optimum parameter settings for the electrospinning process so as to produce elctrospun mats with the preferred characteristics such as good morphology, Young's modulus and porosity. The input factors of the electrospinnning process were nanoparticles content (1-5%), voltage (25-35 kV), and flow rate (1-3 ml/h) while the responses considered were Young's modulus and porosity. Empirical models for both responses as a function of the input factors were developed and the optimum input factors setting were determined, and found to be at 5% nanoparticle content, 35 kV voltage, and 1 ml/h volume flow rate. The characteristics and performance of the optimum PVA/γ-Fe2O3 nanofiber mats were compared with those of neat PVA nanofiber mats in terms of morphology, thermal properties, and hydrophilicity. The PVA/γ-Fe2O3 nanofiber mats exhibited higher fiber diameter and surface roughness yet similar thermal properties and hydrophilicity compared to neat PVA PVA/γ-Fe2O3 nanofiber mats. Biocompatibility test by exposing the nanofiber mats with human blood cells was performed. In terms of clotting time, the PVA/γ-Fe2O3 nanofibers exhibited similar behavior with neat PVA. The PVA/γ-Fe2O3 nanofibers also showed higher cells proliferation rate when MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was done using human skin fibroblast cells. Thus, the PVA/γ-Fe2O3 electrospun nanofibers can be a promising biomaterial for tissue engineering scaffolds.


Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Nanopartículas/química , Nanotecnologia/métodos , Álcool de Polivinil/química , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Cloreto de Cálcio/farmacologia , Módulo de Elasticidade , Eletricidade , Fibrina/metabolismo , Humanos , Teste de Materiais , Nanofibras/química , Álcool de Polivinil/farmacologia , Porosidade
13.
Biotechnol Adv ; 30(3): 550-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22041165

RESUMO

This work reviews the stripping off, role of water molecules in activity, and flexibility of immobilized Candida antarctica lipase B (CALB). Employment of CALB in ring opening polyester synthesis emphasizing on a polylactide is discussed in detail. Execution of enzymes in place of inorganic catalysts is the most green alternative for sustainable and environment friendly synthesis of products on an industrial scale. Robust immobilization and consequently performance of enzyme is the essential objective of enzyme application in industry. Water bound to the surface of an enzyme (contact class of water molecules) is inevitable for enzyme performance; it controls enzyme dynamics via flexibility changes and has intensive influence on enzyme activity. The value of pH during immobilization of CALB plays a critical role in fixing the active conformation of an enzyme. Comprehensive selection of support and protocol can develop a robust immobilized enzyme thus enhancing its performance. Organic solvents with a log P value higher than four are more suitable for enzymatic catalysis as these solvents tend to strip away very little of the enzyme surface bound water molecules. Alternatively ionic liquid can work as a more promising reaction media. Covalent immobilization is an exclusively reliable technique to circumvent the leaching of enzymes and to enhance stability. Activated polystyrene nanoparticles can prove to be a practical and economical support for chemical immobilization of CALB. In order to reduce the E-factor for the synthesis of biodegradable polymers; enzymatic ring opening polyester synthesis (eROPS) of cyclic monomers is a more sensible route for polyester synthesis. Synergies obtained from ionic liquids and immobilized enzyme can be much effective eROPS.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lipase/química , Lipase/metabolismo , Poliésteres/química , Poliésteres/síntese química , Adsorção , Catálise , Estabilidade Enzimática , Nanopartículas/química , Solventes/química , Água/química
14.
J Hazard Mater ; 227-228: 309-16, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22682796

RESUMO

In this study magnetic separable photocatalyst beads containing maghemite nanoparticles (γ-Fe(2)O(3)) in polyvinyl alcohol (PVA) polymer were prepared and used in the reduction of Cr(VI) to Cr(III) in an aqueous solution under sunlight. The unique superparamagnetic property of the photocatalyst contributed by the γ-Fe(2)O(3) and robust property of PVA polymer allow the magnetic beads to be recovered easily and reused for at least 7 times without washing. The concentration of γ-Fe(2)O(3) was varied from 8% (v/v) to 27% (v/v) and the results revealed that the beads with 8% (v/v) γ-Fe(2)O(3) exhibited the best performance where Cr(VI) was reduced to Cr(III) in only 30 min under sunlight. The use of the PVA has improved the bead properties and life cycle of beads which is in line with sustainable practices.


Assuntos
Alginatos/química , Cromo/química , Compostos Férricos/química , Nanopartículas Metálicas/química , Álcool de Polivinil/química , Poluentes Químicos da Água/química , Catálise , Cromo/efeitos da radiação , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Magnetismo , Oxirredução , Processos Fotoquímicos , Luz Solar , Poluentes Químicos da Água/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA