Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dev Biol ; 422(1): 24-32, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27989519

RESUMO

One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.


Assuntos
Padronização Corporal/genética , Besouros/embriologia , Mandíbula/embriologia , Caracteres Sexuais , Animais , Evolução Biológica , Receptores ErbB/fisiologia , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Masculino , Processos de Determinação Sexual
2.
PLoS Genet ; 10(1): e1004098, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453990

RESUMO

Sexual dimorphisms in trait expression are widespread among animals and are especially pronounced in ornaments and weapons of sexual selection, which can attain exaggerated sizes. Expression of exaggerated traits is usually male-specific and nutrition sensitive. Consequently, the developmental mechanisms generating sexually dimorphic growth and nutrition-dependent phenotypic plasticity are each likely to regulate the expression of extreme structures. Yet we know little about how either of these mechanisms work, much less how they might interact with each other. We investigated the developmental mechanisms of sex-specific mandible growth in the stag beetle Cyclommatus metallifer, focusing on doublesex gene function and its interaction with juvenile hormone (JH) signaling. doublesex genes encode transcription factors that orchestrate male and female specific trait development, and JH acts as a mediator between nutrition and mandible growth. We found that the Cmdsx gene regulates sex differentiation in the stag beetle. Knockdown of Cmdsx by RNA-interference in both males and females produced intersex phenotypes, indicating a role for Cmdsx in sex-specific trait growth. By combining knockdown of Cmdsx with JH treatment, we showed that female-specific splice variants of Cmdsx contribute to the insensitivity of female mandibles to JH: knockdown of Cmdsx reversed this pattern, so that mandibles in knockdown females were stimulated to grow by JH treatment. In contrast, mandibles in knockdown males retained some sensitivity to JH, though mandibles in these individuals did not attain the full sizes of wild type males. We suggest that moderate JH sensitivity of mandibular cells may be the default developmental state for both sexes, with sex-specific Dsx protein decreasing sensitivity in females, and increasing it in males. This study is the first to demonstrate a causal link between the sex determination and JH signaling pathways, which clearly interact to determine the developmental fates and final sizes of nutrition-dependent secondary-sexual characters.


Assuntos
Besouros/genética , Ingestão de Alimentos/genética , Hormônios Juvenis/genética , Caracteres Sexuais , Transdução de Sinais , Animais , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/metabolismo , Larva/crescimento & desenvolvimento , Masculino , Mandíbula/crescimento & desenvolvimento , Interferência de RNA , Diferenciação Sexual/genética , Fatores de Transcrição/genética
3.
J Exp Zool B Mol Dev Evol ; 320(5): 295-306, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23703784

RESUMO

Eusocial insects exhibit various morphological castes associated with the division of labor within a colony. Termite soldiers possess defensive traits including mandibles that are greatly exaggerated and enlarged, as compared to termite reproductives and workers. The enlarged mandibles of soldiers are known to result from dynamic morphogenesis during soldier differentiation that can be induced by juvenile hormone and its analogs. However, the detailed developmental mechanisms still remain unresolved. Because the insulin/insulin-like growth factor signaling (IIS) pathway has been shown to regulate the relative sizes of organs (i.e., allometry) in other insects, we examined the expression profiles of major IIS factors in the damp-wood termite Hodotermopsis sjostedti, during soldier differentiation. The relative expression patterns of orthologs for termite InR (HsjInR), PKB/Akt (HsjPKB/Akt), and FOXO (HsjFOXO) suggest that HsjInR and HsjPKB/Akt were up-regulated in the period of elongation of mandibles during soldier development. In situ hybridization showed that HsjInR was strongly expressed in the mandibular epithelial tissues, and RNA interference (RNAi) for HsjInR disrupted soldier-specific morphogenesis including mandibular elongation. These results suggest that signaling through the IIS pathway is required for soldier-specific morphogenesis. In addition, up-regulation of the IIS pathway in other body tissues occurred at earlier stages of development, indicating that there is tissue-specific IIS regulation. Because the IIS pathway is generally thought to act upstream of JH in insects, our results suggest the damp-wood termite may have evolved a novel feedback loop between JH and IIS that enables social interactions, rather than nutrition, to regulate caste determination.


Assuntos
Insulina/metabolismo , Isópteros/crescimento & desenvolvimento , Morfogênese , Animais , Hibridização In Situ , Hormônios Juvenis/metabolismo , Transdução de Sinais , Madeira/química
4.
J Agric Food Chem ; 67(12): 3491-3501, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30789726

RESUMO

Ergothioneine-rich crude extracts of Pleurotus cornucopiae were used as a source of antioxidative components to control the effects of lipid oxidation in astaxanthin-containing liposomes. This study aimed to elucidate the interactions of liposomal astaxanthin and lipids with ergothioneine-rich mushroom extract (ME) under radical oxidation-induced conditions to provide a better understanding of the agricultural and postharvest applications of this strategy. Azo compounds (2,2'-azobis(2-methylpropionamidine) dihydrochloride and 2,2'-azobis(2,4-dimethylvaleronitrile) were used as hydrophilic and lipophilic radical initiators, respectively. Results of this study demonstrate that the presence of ME significantly delayed the oxidative degradation of astaxanthin and controlled the progress of lipid oxidation in a liposomal system. The lipid hydroperoxide formation was significantly suppressed, while polyunsaturated fatty acids were protected from degradation. In addition, Crude ME also demonstrated more potent DPPH radical scavenging activities and EC50 than the equimolar concentrations of ergothioneine alone, which suggested the presence of additional compounds with antioxidative properties.


Assuntos
Ergotioneína/química , Lipossomos/química , Extratos Vegetais/química , Pleurotus/química , Compostos Azo/química , Oxirredução , Xantofilas/química
5.
PLoS One ; 11(5): e0154230, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27196303

RESUMO

In termites, i.e. a major group of eusocial insects, the soldier caste exhibits specific morphological characteristics and extremely high aggression against predators. Although the genomic background is identical to the other non-aggressive castes, they acquire the soldier-specific behavioral character during the course of caste differentiation. The high aggressiveness and defensive behavior is essential for colony survival, but the neurophysiological bases are completely unknown. In the present study, using the damp-wood termite Hodotermopsis sjostedti, we focused on two biogenic amines, octopamine (OA) and tyramine (TA), as candidate neuromodulators for the defensive behavior in soldiers. High-performance liquid chromatographic analysis revealed that TA levels in the brain and suboesophageal ganglion (SOG) and the OA level in brain were increased in soldiers than in pseudergates (worker caste). Immunohistochemical analysis revealed that TA/OA neurons that innervate specific areas, including the mandibular muscles, antennal nerve, central complex, suboesophageal ganglion, and thoracic and/or abdominal ganglia, were enlarged in a soldier-specific manner. Together with the results that pharmacological application of TA promoted the defensive behavior in pseudergates, these findings suggest that the increased TA/OA levels induce the higher aggressiveness and defensive behavior in termite soldiers. The projection targets of these soldier-specific enlarged TA/OA neurons may have important roles in the higher aggressiveness and defensive behavior of the termite soldiers, inducing the neuronal transition that accompanies external morphological changes.


Assuntos
Comportamento Animal/fisiologia , Isópteros/fisiologia , Octopamina/administração & dosagem , Tiramina/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Imuno-Histoquímica , Hormônios Juvenis/fisiologia , Neurônios/citologia
6.
Colloids Surf B Biointerfaces ; 132: 299-304, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26057248

RESUMO

Poly(N-isopropylacrylamide) (PNIPAm) is one of the most widely studied temperature-responsive polymers among those that have been applied to biomaterials science and technology. Here, we investigated the importance of interactions between PNIPAm-based copolymers and biological factors. The effects of a series of major anionic electrolytes in biological environments and of human serum albumin (HSA) on the lower critical solution temperature (LCST) of homo-PNIPAm and PNIPAm copolymers were studied, using either a hydrophobic monomer or a cationic monomer. We synthesized P(NIPAm-co-BMA3%) with butyl methacrylate (BMA) as a hydrophobic monomer and P(NIPAm-co-DMAPAm2%) with N,N-dimethylaminopropyl acrylamide (DMAPAm) as a cationic monomer. The LCST of PNIPAm and P(NIPAm-co-DMAPAm2%) decreased with increasing salt concentrations, and the effects of anions on each polymer corresponded to the Hofmeister series. The LCST of P(NIPAm-co-DMAPAm2%) was greatly affected by anionic electrolytes compared with those of homo-PNIPAm and P(NIPAm-co-BMA3%). While the LCST of homo-PNIPAm was not affected by HSA, the LCST of P(NIPAm-co-DMAPAm2%) decreased non-linearly with increasing HSA concentrations. These effects were due to the electrostatic interactions between the positively charged polymer chains and the negatively charged HSA, as well as the stabilization of polymer aggregations with HSA. Under physiological buffer conditions, the LCST of P(NIPAm-co-DMAPAm2%) was not significantly affected by the HSA concentration. These results indicated that depending on the types of copolymers used for biological applications, it is necessary to take into account the effect of biological media while designing polymers.


Assuntos
Resinas Acrílicas/química , Eletrólitos/química , Polímeros/química , Albumina Sérica/química , Temperatura , Ânions , Humanos
7.
PLoS One ; 6(10): e26836, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22053215

RESUMO

Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-)). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/-) cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/-) cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/-) cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/-) cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Interleucina-10/biossíntese , Espaço Intracelular/enzimologia , Macrófagos/enzimologia , Oligodesoxirribonucleotídeos/metabolismo , Ácidos/metabolismo , Androstadienos/farmacologia , Animais , Cátions , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Espaço Intracelular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Lipossomos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Transporte Proteico/efeitos dos fármacos , Wortmanina
8.
PLoS One ; 3(7): e2617, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18612458

RESUMO

Social insects exhibit a variety of caste-specific behavioral tendencies that constitute the basis of division of labor within the colony. In termites, the soldier caste display distinctive defense behaviors, such as aggressively attacking enemies with well-developed mandibles, while the other castes retreat into the colony without exhibiting any aggressive response. It is thus likely that some form of soldier-specific neuronal modification exists in termites. In this study, the authors compared the brain (cerebral ganglion) and the suboesophageal ganglion (SOG) of soldiers and pseudergates (workers) in the damp-wood termite, Hodotermopsis sjostedti. The size of the SOG was significantly larger in soldiers than in pseudergates, but no difference in brain size was apparent between castes. Furthermore, mandibular nerves were thicker in soldiers than in pseudergates. Retrograde staining revealed that the somata sizes of the mandibular motor neurons (MdMNs) in soldiers were more than twice as large as those of pseudergates. The enlargement of MdMNs was also observed in individuals treated with a juvenile hormone analogue (JHA), indicating that MdMNs become enlarged in response to juvenile hormone (JH) action during soldier differentiation. This enlargement is likely to have two functions: a behavioral function in which soldier termites will be able to defend more effectively through relatively faster and stronger mandibular movements, and a developmental function that associates with the development of soldier-specific mandibular muscle morphogenesis in termite head. The soldier-specific enlargement of mandibular motor neurons was observed in all examined species in five termite families that have different mechanisms of defense, suggesting that such neuronal modification was already present in the common ancestor of termites and is significant for soldier function.


Assuntos
Isópteros/citologia , Nervo Mandibular/citologia , Neurônios Motores/citologia , Animais , Encéfalo/fisiologia , Embrião não Mamífero/metabolismo , Cistos Glanglionares/metabolismo , Isópteros/embriologia , Isópteros/fisiologia , Nervo Mandibular/fisiologia , Morfogênese , Neurônios Motores/fisiologia , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA