RESUMO
Metal pollutants are a growing concern due to increased use in mining and other industrial processes. Moreover, the use of metals in daily life is becoming increasingly prevalent. Metals such as manganese (Mn), cobalt (Co), and nickel (Ni) are toxic in high amounts whereas lead (Pb) and cadmium (Cd) are acutely toxic at low µM concentrations. These metals are associated with system dysfunction in humans including cancer, neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, and other cellular process'. One known but lesser studied target of these metals are lipids that are key membrane building blocks or serve signalling functions. It was shown that Mn, Co, Ni, Pb, and Cd cause rigidification of liposomes and increase the phase transition in membranes composed of both saturated or partly unsaturated phosphatidic acid (PA) and phosphatidylserine (PS). The selected metals showed differential effects that were more pronounced on saturated lipids. In addition, more rigidity was induced in the biologically relevant liquid-crystalline phase. Moreover, metal affinity, induced rigidification and liposome size increases also varied with the headgroup architecture, whereby the carboxyl group of PS appeared to play an important role. Thus, it can be inferred that Mn, Co, Ni, Cd, and Pb may have preferred binding coordination with the lipid headgroup, degree of acyl chain unsaturation, and membrane phase.
Assuntos
Lipossomos , Ácidos Fosfatídicos , Fosfatidilserinas , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/metabolismo , Lipossomos/química , Humanos , Metais Pesados/química , Íons/químicaRESUMO
The lanthanide metal gadolinium has been used in the healthcare industry as a paramagnetic contrast agent for years. Gadolinium deposition in brain tissue and kidneys has been reported following gadolinium-based contrast agent administration to patients undergoing MRI. This study demonstrates the detrimental effects of gadolinium exposure at the level of the cell membrane. Biophysical analysis using fluorescence spectroscopy and dynamic light scattering illustrates differential interactions of gadolinium ions with key classes of brain membrane lipids, including phosphatidylcholines and sphingomyelins, as well as brain polar extracts and biomimetic brain model membranes. Electrostatic attraction to negatively charged lipids like phosphatidylserine facilitates metal complexation but zwitterionic phosphatidylcholine and sphingomyelin interaction was also significant, leading to membrane rigidification and increases in liposome size. Effects were stronger for fully saturated over monounsaturated acyl chains. The metal targets key lipid classes of brain membranes and these biophysical changes could be very detrimental in biological membranes, suggesting that the potential negative impact of gadolinium contrast agents will require more scientific attention.