Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 31(46): 12719-26, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26531224

RESUMO

Discoidal high-density lipoproteins generated by the apolipoprotein-mediated solubilization of membrane lipids in vivo can be reconstituted with phospholipids and apolipoproteins in vitro. Recently, it has been reported that such particles can be prepared using the hydrolyzed acid form of styrene-maleic anhydride copolymer (SMAaf) instead of apolipoproteins, but characterization of its physicochemical properties has remained less elucidated. In the present study, with the aim of applying SMAaf-based lipid nanoparticles as novel delivery vehicles of drugs and/or imaging agents, we investigated the preparation conditions and evaluated the physicochemical properties of lipid-SMAaf complexes. SMAaf induced spontaneous turbidity clearance of dimyristoylphosphatidylcholine (DMPC) vesicles accompanied by the formation of smaller particles not only at the phase transition temperature of DMPC but also above it. Such reductions in the turbidity were not observed with some other amphiphilic synthetic polymers tested under the same experimental conditions. Size exclusion chromatography analyses showed that homogeneously sized particles were prepared at lipid to SMAaf weight ratios of less than 1/1.5. Dynamic light scattering and transmission electron microscopy revealed that gel-filtered DMPC-SMAaf complexes were approximately 8-10 nm in diameter and discoidal in shape. The DMPC-SMAaf complexes were relatively stable even after lyophilization but were sensitive to pH changes. Fluorescence techniques demonstrated that the gel to liquid-crystalline phase transition temperature of DMPC in the discoidal complexes broadened significantly relative to that of liposomes, despite their common bilayer structure, which is a typical feature of discoidal lipid nanoparticles. These results provide fundamental insights into discoidal SMAaf-based lipid nanoparticles for the development of novel delivery vehicles.


Assuntos
Dimiristoilfosfatidilcolina/química , Portadores de Fármacos/química , Nanopartículas/química , Polímeros/química , Apolipoproteínas/química , Hidrólise , Anidridos Maleicos/química , Modelos Moleculares , Conformação Molecular , Pirenos/química , Solubilidade , Estireno/química
2.
Biochim Biophys Acta Biomembr ; 1862(5): 183209, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004520

RESUMO

Styrene maleic acid copolymers (SMA) form discoidal lipid nanoparticles (lipid nanodisks) that mimic plasma high-density lipoproteins. We have previously prepared and characterized lipid nanodisks composed of SMA and the neutral phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In the present study, we tested whether the surface charges can alter the physicochemical and biological properties of lipid-SMA discoidal particles. Unlike the case of DMPC alone, addition of saline to the buffer was necessary to induce the formation of lipid-SMA complexes containing either 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) or 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP), with formation efficiency being dependent on the concentration of charged lipids. After purification, DMPG- or DMTAP-containing discoidal particles with an approximate size of 10 nm were obtained in a manner similar to DMPC alone. Although DMPG and DMTAP appeared to be similarly incorporated into the lipid nanodisks, the zeta potentials of both particles were comparable. That is, no significant differences were observed in the physicochemical properties between the lipid-SMA nanodisks. Compared to DMPC-SMA nanodisks, the uptake of DMPG or DMTAP-containing discoidal particles by RAW264 cells was increased for both particle types, whereas in MDA-MB-231 cells, only DMTAP-containing discoidal particle uptake was increased. In addition, fluorescence microscopy revealed that lipid-SMA nanodisks are localized adjacent to the plasma membrane of RAW264 cells but in MDA-MB-231 cells they accumulated in the center of the cell. Furthermore, these particles caused cytotoxicity in a cell-type dependent manner, with high toxicity in MDA-MB-231. These results raised the possibility that compositional alterations in lipid-SMA discoidal particles may modulate biological reactions in vivo.


Assuntos
Lipoproteínas/química , Maleatos/química , Maleatos/metabolismo , Poliestirenos/química , Poliestirenos/metabolismo , Membrana Celular/química , Dimiristoilfosfatidilcolina/química , Gotículas Lipídicas/química , Lipoproteínas/metabolismo , Nanopartículas/química , Fosfolipídeos/química , Solubilidade , Estireno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA