Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 8(6): 1580-1591, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-31932833

RESUMO

Implants based on silicone elastomers, polydimethylsiloxane (PDMS), have been widely used for breast augmentation and reconstruction, but excessive foreign body reactions around implants often cause serious side effects such as capsular contracture. In our previous study, we covalently grafted 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymers on the surface of PDMS blocks by UV-induced polymerization and showed effective reduction of capsular formation around the MPC-grafted PDMS in rats. In the present study, we examined the efficacy of heat-induced polymerization of MPC grafting on silicone breast implants intended for humans, and analyzed the in vivo inhibitory effect against capsular formation and inflammation in pigs, which are closely related to humans in terms of epidermal structures and fibrotic processes. The heat-induced polymerization provided a thicker MPC-grafted surface and was more effective than UV-induced polymerization for the grafting of complex shaped non-transparent implants. After 24-week implantation in the submuscular pockets of Yorkshire pigs, the heat-induced MPC-grafted breast implants showed 45% smaller capsular thickness and 20-30% lower levels of inflammatory markers such as myeloperoxidase (MPO), transforming growth factor-ß (TGF-ß), and α-smooth muscle actin (α-SMA) in surrounding tissues compared to non-grafted implants. This study provides important information for future clinical trials of MPC-grafted silicone implants.


Assuntos
Implantes de Mama/efeitos adversos , Dimetilpolisiloxanos/química , Reação a Corpo Estranho/prevenção & controle , Metacrilatos/química , Fosforilcolina/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Temperatura Alta , Humanos , Fosforilcolina/química , Polimerização , Propriedades de Superfície , Suínos , Raios Ultravioleta
2.
ACS Appl Mater Interfaces ; 12(27): 30198-30212, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574031

RESUMO

The surface of human silicone breast implants is covalently grafted at a high density with a 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymer. Addition of cross-linkers is essential for enhancing the density and mechanical durability of the MPC graft. The MPC graft strongly inhibits not only adsorption but also the conformational deformation of fibrinogen, resulting in the exposure of a buried amino acid sequence, γ377-395, which is recognized by inflammatory cells. Furthermore, the numbers of adhered macrophages and the amounts of released cytokines (MIP-1α, MIP-1ß, IL-8, TNFα, IL-1α, IL-1ß, and IL-10) are dramatically decreased when the MPC network is introduced at a high density on the silicone surface (cross-linked PMPC-silicone). We insert the MPC-grafted human silicone breast implants into Yorkshire pigs to analyze the in vivo effect of the MPC graft on the capsular formation around the implants. After 6 month implantation, marked reductions of inflammatory cell recruitment, inflammatory-related proteins (TGF-ß and myeloperoxidase), a myoblast marker (α-smooth muscle actin), vascularity-related factors (blood vessels and VEGF), and, most importantly, capsular thickness are observed on the cross-linked PMPC-silicone. We propose a mechanism of the MPC grafting effect on fibrous capsular formation around silicone implants on the basis of the in vitro and in vivo results.


Assuntos
Metacrilatos/química , Fosforilcolina/análogos & derivados , Polímeros/química , Animais , Quimiocina CCL4/metabolismo , Fibrinogênio/química , Macrófagos/metabolismo , Fosforilcolina/química , Silicones/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA