Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur Spine J ; 31(5): 1122-1130, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35249143

RESUMO

BACKGROUND: To compare high- versus low-viscosity bone cement on the clinical outcomes and complications in patients with Osteoporotic vertebral compression fractures (OVCFs) who underwent percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). METHODS: PubMed, Embase, and the Cochrane Library were searched for papers published from inception up to February 2021 for potentially eligible studies comparing high- versus low-viscosity cement for PVP/PKP. The outcomes were the leakage rate, visual analog scale (VAS), and Oswestry Disability Index (ODI). RESULTS: Eight studies (558 patients; 279 in each group) were included. The meta-analysis showed that the leakage rate was lower with high-viscosity cement than with low-viscosity cement (OR = 0.23, 95%CI 0.14-0.39, P < 0.001; I2 = 43.5%, Pheterogeneity = 0.088); similar results were observed specifically for the disk space, paravertebral space, and peripheral vein, but there were no differences regarding the epidural space and intraspinal space. The VAS was decreased more significantly with high-viscosity cement than with low-viscosity cement (WMD = - 0.21, 95%CI - 0.38, - 0.04, P = 0.015; I2 = 0.0%, Pheterogeneity = 0.565). Regarding the ODI, there was no difference between high- and low-viscosity cement (WMD = - 0.88, 95%CI - 3.06, 1.29, P = 0.426; I2 = 78.3%, Pheterogeneity < 0.001). CONCLUSIONS: There were lower cement leakage rates in PVP/PKP with high-viscosity bone cement than low-viscosity bone cement. The two groups have similar results in ODI, but the VAS scores favor high-viscosity bone cement. Therefore, the administration of high-viscosity bone cement in PVP/ PKP could be a potential option for improving the complications of leakage in OVCFs, while the clinical efficacy of relieving pain is not certain.


Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Cimentos Ósseos/uso terapêutico , Fraturas por Compressão/complicações , Fraturas por Compressão/cirurgia , Humanos , Cifoplastia/métodos , Fraturas por Osteoporose/cirurgia , Estudos Retrospectivos , Fraturas da Coluna Vertebral/complicações , Fraturas da Coluna Vertebral/cirurgia , Resultado do Tratamento , Vertebroplastia/métodos , Viscosidade
2.
Int J Biol Macromol ; 262(Pt 2): 130215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365141

RESUMO

To develop ecofriendly multifunctional gel materials for sustainable flexible electronic devices, composite organohydrogels of gellan gum (GG) and polypyrrole (PPy) with an interpenetrating network structure (IPN-GG/PPy organohydrogels) were developed first time, through fabrication of GG organohydrogels followed by in-situ oxidation polymerization of pyrrole inside. Combination of water with glycerol can not only impart environment-stability to GG hydrogels but promote the mechanics remarkably, with the compressive strength amplified by 1250 % from 0.02 to 0.27 MPa. Incorporation of PPy confers electrical conductivity to the GG organohydrogel as well as promoting the mechanical performance further. The maximum conductivity of the IPN-GG/PPy organohydrogels reached 1.2 mS/cm at 25 °C, and retained at 0.6 mS/cm under -20 °C and 0.56 mS/cm after 7 days' exposure in 25 °C and 60 % RH. The compression strength of that with the maximum conductivity increases by 170 % from 0.27 to 0.73 MPa. The excellent conductivity and mechanical properties endow the IPN-GG/PPy organohydrogels good piezoresistive strain/pressure sensing behavior. Moreover, the thermo-reversible GG network bestows them shape-memory capability. The multifunctionality and intrinsic eco-friendliness is favorable for sustainable application in fields such as flexible electronics, soft robotics and artificial intelligence, competent in motion recognition, physiological signal monitoring, intelligent actuation.


Assuntos
Inteligência Artificial , Polímeros , Polissacarídeos Bacterianos , Pirróis , Condutividade Elétrica , Hidrogéis , Tempo (Meteorologia)
3.
Int J Biol Macromol ; 212: 202-210, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569679

RESUMO

To construct conductive hydrogels with a conductive and a non- or weakly conductive layer for comfortable and safe electronic application, marine biobased anionic polysaccharide sodium alginate (SA) and neutral polyvinyl alcohol (PVA) were employed as the hydrogel matrixes. Tannic acid (TA) was exploited to mediate the demixing of the miscible aqueous solution of SA and PVA in view of the much larger interaction strength of TA with PVA than both of TA with SA and PVA with SA calculated from the density functional theory (-40.21, -29.77 and -21.00 kcal·mol-1 respectively). The finally-fabricated alginate/PVA composite hydrogels not only possess a "Janus" hierarchy but manifest asymmetrical conductivity, i.e., one layer strongly conductive and another weakly conductive. The strongly conductive layer achieves a conductivity of more than 2.95 S·m-1, facilitating their application in soft electronic areas like human-machine interfaces, smart wearable devices and soft robots. The weakly conductive layer with the conductivity less than 0.60 S·m-1 and the thickness adjustable, constitutes a protective screen for another layer. The Janus hydrogels exhibit good mechanical performance, excellent strain-sensing performance and fatigue-resistant mechanics, conductivity and sensitivity.


Assuntos
Alginatos , Álcool de Polivinil , Condutividade Elétrica , Humanos , Hidrogéis , Taninos
4.
Int J Biol Macromol ; 168: 507-517, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33310103

RESUMO

Vaccines, in many cases, stimulate only too weak immunogenicity to prevent infection. Therefore, adjuvants are required during their preparation to boost the immune response. We herein developed a PEGylated nano-adjuvant based on Rehmannia glutinosa polysaccharide (RGP). The addition of PEG layer exhibits enhanced immune performance of the nano-RGP. Stimulation of dendritic cells (DCs) with PEGylated nano-RGP (pRL) led to increased proliferation and cytokine production (IL-6, IL-12, IL-1ß and TNF-α). The pRL was internalized into DCs via a rapid and efficient method. The mice immunized with pRL exhibited enhanced antigen-specific serum IgG and Th1-(IFN-γ), Th2-(IL-4), and Th17-(IL-17, IL-6) cytokine production, contributing to a good anti-infection performance. Furthermore, the pRL could effectively deliver the antigen to the lymph nodes (LNs), activate DC in the LN and produce enhanced CD4+and CD8+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) as well as functional phenotypes. Our results revealed that pRL can act as a promising adjuvant with targeted delivery of antigen due to its effective activation and robust adaptive immunity induction of DCs.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Bordetella bronchiseptica/imunologia , Polietilenoglicóis/química , Polissacarídeos/administração & dosagem , Rehmannia/química , Imunidade Adaptativa , Adjuvantes Imunológicos/química , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Feminino , Imunização , Camundongos , Nanopartículas , Polissacarídeos/química , Polissacarídeos/imunologia
5.
Carbohydr Polym ; 136: 121-7, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26572337

RESUMO

Zinc ion as the only flame retardant of cellulose fibers was successfully grafted onto cellulose fibers. Grafting maleic anhydride onto cellulose fibers via homogeneous acylation reaction between N,N-dimethyl formamide (DMF) as the first step. Then, graft zinc ion onto the formed cellulose fibers was conducted with zinc carbonate. The resulting copolymers were characterized by FTIR. Flame retardancy and thermal degradation of zinc-ion-modified cellulose fibers (cellulose-Zn fibers) was investigated by limiting oxygen index (LOI), cone calorimeter (CONE), XRD, TG and SEM. Zinc ion could effectively improve flame retardancy and thermal degradation when its content increases up to 4.96 wt%.


Assuntos
Celulose/química , Retardadores de Chama , Zinco/química , Dimetilformamida/química , Anidridos Maleicos/química , Oxigênio/química , Relação Estrutura-Atividade
6.
Int J Oral Sci ; 8(3): 182-90, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680288

RESUMO

Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remains poorly understood. Via a double-blinded, randomised controlled trial of 91 subjects, the impact of CPC-containing oral rinses on supragingival plaque was investigated in experimental gingivitis, where the subjects, after a 21-day period of dental prophylaxis to achieve healthy gingivae, received either CPC rinses or water for 21 days. Within-subject temporal dynamics of plaque microbiota and symptoms of gingivitis were profiled via 16S ribosomal DNA gene pyrosequencing and assessment with the Mazza gingival index. Cetylpyridinium chloride conferred gingival benefits, as progression of gingival inflammation resulting from a lack of dental hygiene was significantly slower in the mouth rinse group than in the water group due to inhibition of 17 gingivitis-enriched bacterial genera. Tracking of plaque α and ß diversity revealed that CPC treatment prevents acquisition of new taxa that would otherwise accumulate but maintains the original biodiversity of healthy plaques. Furthermore, CPC rinses reduced the size, local connectivity and microbiota-wide connectivity of the bacterial correlation network, particularly for nodes representing gingivitis-enriched taxa. The findings of this study provide mechanistic insights into the impact of oral rinses on the progression and maturation of dental plaque in the natural human population.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Cetilpiridínio/uso terapêutico , Placa Dentária/tratamento farmacológico , Gengivite/tratamento farmacológico , Antissépticos Bucais/uso terapêutico , Adolescente , Adulto , Placa Dentária/microbiologia , Índice de Placa Dentária , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice Periodontal , RNA Ribossômico 16S , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA