Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 273: 116130, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394761

RESUMO

The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.5% to as high as 82.7% in the feeds. The method to construct a targeting MnP and fortify it with an additional enhancer could be similarly applied to catalyze the many other mycotoxins with yet unknown responsive biocatalysts.


Assuntos
Lignina , Micotoxinas , Tricotecenos , Lignina/metabolismo , Peroxidases/metabolismo
2.
Sci Bull (Beijing) ; 68(2): 214-223, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36641289

RESUMO

Growing populations and climate change pose great challenges to food security. Humankind is confronting a serious question: how will we feed the world in the near future? This study presents an out-of-the-box solution involving the highly efficient biosynthesis of artificial starch and microbial proteins from available and abundant agricultural residue as new feed and food sources. A one-pot biotransformation using an in vitro coenzyme-free synthetic enzymatic pathway and baker's yeast can simultaneously convert dilute sulfuric acid-pretreated corn stover to artificial starch and microbial protein under aerobic conditions. The ß-glucosidase-free commercial cellulase mixture plus an ex vivo two-enzyme complex containing cellobiose phosphorylase and potato α-glucan phosphorylase displayed on the surface of Saccharomyces cerevisiae, showed better cellulose hydrolysis rates than a commercial ß-glucosidase-rich cellulase mixture. This is because the channeling of the hydrolytic product from the solid cellulosic feedstock to the yeast mitigated the inhibition of the cellulase cocktail. Animal tests have shown that the digestion of artificial amylose results in slow and relatively small changes in blood sugar levels, suggesting that it could be a new health food component that prevents obesity and diabetes. A combination of the utilization of available agricultural residue and the biosynthesis of starch and microbial protein from non-food biomass could address the looming food crisis in the food-energy-water nexus.


Assuntos
Celulase , Amido , Celulose/química , Celulase/química , beta-Glucosidase/metabolismo , Amilose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA