Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(1): 143-154, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38054613

RESUMO

Hydrogel-based flexible strain sensors have been known for their excellent ability to convert different motions of humans into electrical signals, thus enabling real-time monitoring of various human health parameters. In this work, a composite hydrogel with hydrophobic association and hybrid cross-linking was fabricated by using polyacrylamide (PAm), surfactant sodium dodecyl sulfate (SDS), lauryl methacrylate (LMA), and polypyrrole (PPy). The dynamic dissociation-conjugation among LMA, SDS, and PPy could dissipate energy to improve the toughness of hydrogels. The SDS/PPy/LMPAm composite hydrogel with a toughness of 1.44 MJ/m3, tensile fracture stress of 345 kPa, tensile strain of 1021%, and electrical conductivity of 0.57 S/m was obtained. Furthermore, an interdigital electrode flexible pressure sensor was designed to replace the bipolar electrode flexible pressure sensor, which greatly improved the sensitivity and resolution of the pressure sensor. The SDS/PPy/LMPAm composite hydrogel-based interdigital electrode flexible pressure sensor showed extraordinary stability and identified different hand gestures as well as monitored the pulse signal of humans. Moreover, the characteristic systolic and diastolic peaks were clearly observed. The pulse frequency (65 times/min) and the radial artery augmentation index (0.57) were calculated, which are very important in evaluating the arterial vessel wall and function of human arteries.


Assuntos
Hidrogéis , Polímeros , Humanos , Pirróis , Condutividade Elétrica , Eletrodos
2.
Biomacromolecules ; 23(6): 2603-2613, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35617102

RESUMO

As a classic flexible material, hydrogels show great potential in wearable electronic devices. The application of strain sensors prepared using them in human health monitoring and humanoid robotics is developing rapidly. However, it is still a challenge to fabricate a high-toughness, large-tensile-deformation, strain-sensitive. and human-skin-fit hydrogel with the integration of excellent mechanical properties and high electrical conductivity. In this study, a flexible sensor using a highly strain-sensitive skin-like hydrogel with acrylamide and sodium alginate was designed using liquid metallic gallium as a "reactive" conductive filler. The sensor had a low elastic modulus (30 kPa) similar to that of skin, a high-toughness (2.25 MJ m-3), self-stiffness, a large tensile deformation (1400%), recoverability, and excellent fatigue resistance. Moreover, the addition of gallium might enhance the electrical conductivity (1.9 S m-1) of the hydrogel while maintaining high transparency, and the flexible sensor device constructed from it showed high sensitivity to strain (gauge factor = 4.08) and pressure (gauge factor = 0.455 kPa-1). As a result, the hydrogel sensor could monitor various human motions, including large-scale joint bending and tiny facial expression, breathing, voice recognition, and handwriting. Furthermore, it might even be used for human-computer communication.


Assuntos
Alginatos , Gálio , Resinas Acrílicas , Condutividade Elétrica , Humanos , Hidrogéis
3.
J Mater Chem B ; 9(27): 5503-5513, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34132319

RESUMO

The development of fluorescent nanosensors has attracted extensive research interest owing to their superior optoelectronic properties. However, current fluorescent nanoprobes generally involve complicated synthesis processes, background signal disturbance, and limited analyte detection. In this work, a facile and time-saving synthetic strategy for the preparation of green emitting polydopamine polymer dots (PDA-PDs) from dopamine via Fenton reaction at room temperature was proposed for the first time. The obtained PDA-PDs possessed excellent luminescence properties, with a long-wavelength emission of 522 nm, a large Stokes shift of 142 nm, and good photostability against ionic strength and UV irradiation. The formation mechanism of fluorescent PDA-PDs is as follows: in the presence of Fe2+ and H2O2, dopamine could rapidly undergo oxidation to its quinone derivatives and further polymerize to synthesize the fluorescent PDA-PDs with the acceleration of hydroxyl radicals produced from the Fenton reaction. Thus, a versatile turn-on fluorescence sensing method was developed for the detection of multi-analytes (including Fe2+, dopamine, H2O2, and glucose) based on monitoring the intrinsic fluorescence signal of the in situ formation of PDA-PDs. This sensing method could be efficiently applied for the detection of Fe2+, dopamine, and glucose in real human serum samples. Moreover, a three-input AND molecular logic gate based on this sensing platform was designed with the fluorescence signal of PDA-PDs as the gate. Finally, the proposed PDA-PDs could have immense broad prospects in nanomaterials and biosensors.


Assuntos
Dopamina/análise , Compostos Ferrosos/análise , Corantes Fluorescentes/química , Glucose/análise , Peróxido de Hidrogênio/análise , Indóis/química , Polímeros/química , Pontos Quânticos/química , Corantes Fluorescentes/síntese química , Humanos , Indóis/síntese química , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
4.
J Am Chem Soc ; 128(20): 6556-7, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16704245

RESUMO

As-synthesized single-walled carbon nanotubes (SWNTs) are bundled mixtures of different species. The current challenge in the field of carbon nanotube research lies in the processing and separation of SWNTs, which first require efficient dispersion of individual SWNTs in solvents. We report DNA-mimicking polysoap surfactants that disperse SWNTs in aqueous solutions more effectively than DNA. The polysoaps are synthesized by functionalizing the side chain of poly(styrene-alt-maleic acid) with aminopyrene. The synthetic nature of the polysoap opens a new approach to further optimization of not only SWNT dispersion efficiency but also multi-functional SWNT dispersing surfactant.


Assuntos
Materiais Biomiméticos/química , Nanotubos de Carbono/química , Tensoativos/síntese química , Anidridos Maleicos/química , Micelas , Microscopia de Força Atômica , Poliestirenos/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA