Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(46): 28667-28677, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139557

RESUMO

The treatment of diabetic ulcer (DU) remains a major clinical challenge due to the complex wound-healing milieu that features chronic wounds, impaired angiogenesis, persistent pain, bacterial infection, and exacerbated inflammation. A strategy that effectively targets all these issues has proven elusive. Herein, we use a smart black phosphorus (BP)-based gel with the characteristics of rapid formation and near-infrared light (NIR) responsiveness to address these problems. The in situ sprayed BP-based gel could act as 1) a temporary, biomimetic "skin" to temporarily shield the tissue from the external environment and accelerate chronic wound healing by promoting the proliferation of endothelial cells, vascularization, and angiogenesis and 2) a drug "reservoir" to store therapeutic BP and pain-relieving lidocaine hydrochloride (Lid). Within several minutes of NIR laser irradiation, the BP-based gel generates local heat to accelerate microcirculatory blood flow, mediate the release of loaded Lid for "on-demand" pain relief, eliminate bacteria, and reduce inflammation. Therefore, our study not only introduces a concept of in situ sprayed, NIR-responsive pain relief gel targeting the challenging wound-healing milieu in diabetes but also provides a proof-of-concept application of BP-based materials in DU treatment.


Assuntos
Pé Diabético/terapia , Fósforo/administração & dosagem , Terapia Fototérmica , Materiais Inteligentes/administração & dosagem , Cicatrização/efeitos dos fármacos , Anestésicos Locais/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Fibrinogênio/administração & dosagem , Géis , Células Endoteliais da Veia Umbilical Humana , Humanos , Lidocaína/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Trombina/administração & dosagem
2.
Angew Chem Int Ed Engl ; 60(13): 7155-7164, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33434327

RESUMO

Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a superior modality for cancer treatment owing to the non-invasiveness and high tissue-penetrating depth. However, developing biocompatible nanomaterial-based sonosensitizers with efficient SDT capability remains challenging. Here, we employed a liquid-phase exfoliation strategy to obtain a new type of two-dimensional (2D) stanene-based nanosheets (SnNSs) with a band gap of 2.3 eV, which is narrower than those of the most extensively studied nano-sonosensitizers, allowing a more efficient US-triggered separation of electron (e- )-hole (h+ ) pairs for reactive oxygen species (ROS) generation. In addition, we discovered that such SnNSs could also serve as robust near-infrared (NIR)-mediated photothermal therapy (PTT) agents owing to their efficient photothermal conversion, and serve as nanocarriers for anticancer drug delivery owing to the inherent 2D layered structure. This study not only presents general nanoplatforms for SDT-enhanced combination cancer therapy, but also highlights the utility of 2D SnNSs to the field of nanomedicine.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/terapia , Terapia Fototérmica , Sesquiterpenos/química , Terapia por Ultrassom , Terapia Combinada , Portadores de Fármacos/química , Humanos , Estrutura Molecular , Nanomedicina , Neoplasias/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Ondas Ultrassônicas
3.
Chem Soc Rev ; 48(11): 2891-2912, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31120049

RESUMO

The emergence of novel two-dimensional (2D) monoelemental materials (Xenes) has shown remarkable potential for their applications in different fields of technology, as well as addressing new discoveries in fundamental science. Xenes (e.g., borophene, silicene, germanene, stanene, phosphorene, arsenene, antimonene, bismuthene, and tellurene) are of particular interest because they are the most chemically tractable materials for synthetic exploration. Owing to their excellent physical, chemical, electronic and optical properties, Xenes have been regarded as promising agents for biosensors, bioimaging, therapeutic delivery, and theranostics, as well as in several other new bio-applications. In this tutorial review, we summarize their general properties including the classification of Xenes according to their bulk properties. The synthetic and modification methods of Xenes are also presented. Furthermore, the representative Xene nanoplatforms for various biomedical applications are highlighted. Finally, research progress, challenges, and perspectives for the future development of Xenes in biomedicines are discussed.


Assuntos
Materiais Biocompatíveis/química , Nanoestruturas/química , Animais , Materiais Biocompatíveis/uso terapêutico , Técnicas Biossensoriais/métodos , Humanos , Modelos Moleculares , Nanoestruturas/uso terapêutico , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Imagem Óptica/métodos , Nanomedicina Teranóstica/métodos
4.
Anal Chem ; 90(13): 8188-8195, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29874038

RESUMO

Ocular neovascularization can result in devastating diseases that lead to marked vision impairment and eventual visual loss. In clinical implementation, neovascular eye diseases are first diagnosed by fluorescein angiography and then treated by multiple intravitreal injections, which nevertheless involves vision-threatening complications, as well as lack of real-time monitoring disease progression and timely assessment of therapeutic outcomes. To address this critical issue, we herein present a kind of theranostic agents made of peptide-functionalized silicon nanoparticles (SiNPs), suitable for simultaneous ocular neovascularization imaging and therapy. Typically, in addition to negligible toxicity and high specific binding ability to human retinal microvascular endothelial cells tube formation, the cyclo-(Arg-Gly-Asp-d-Tyr-Cys) ( c-(RGDyC))-conjugated SiNPs (SiNPs-RGD) features efficacious antiangiogenic ability in wound healing migration, transwell migration, transwell invasion, and tube formation assays. Taking advantage of these unique merits, we further employ the SiNPs-RGD for labeling angiogenic blood vessels and neovascularization suppression, demonstrating obvious inhibition of new blood vessels formation in mouse corneas. These results suggest the SiNPs-RGD as a novel class of high-quality theranostic probes is suitable for simultaneous diagnosis and treatment in ocular neovascular diseases.


Assuntos
Nanopartículas/química , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Imagem Óptica/métodos , Retina/fisiopatologia , Silício/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular , Estabilidade de Medicamentos , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Retina/diagnóstico por imagem , Retina/efeitos dos fármacos , Nanomedicina Teranóstica , Fatores de Tempo , Distribuição Tecidual
5.
Nano Lett ; 17(7): 4427-4435, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28636389

RESUMO

While RNA interference (RNAi) therapy has demonstrated significant potential for cancer treatment, the effective and safe systemic delivery of RNAi agents such as small interfering RNA (siRNA) into tumor cells in vivo remains challenging. We herein reported a unique multistaged siRNA delivery nanoparticle (NP) platform, which is comprised of (i) a polyethylene glycol (PEG) surface shell, (ii) a sharp tumor microenvironment (TME) pH-responsive polymer that forms the NP core, and (iii) charge-mediated complexes of siRNA and tumor cell-targeting- and penetrating-peptide-amphiphile (TCPA) that are encapsulated in the NP core. When the rationally designed, long circulating polymeric NPs accumulate in tumor tissues after intravenous administration, the targeted siRNA-TCPA complexes can be rapidly released via TME pH-mediated NP disassembly for subsequent specific targeting of tumor cells and cytosolic transport, thus achieving efficient gene silencing. In vivo results further demonstrate that the multistaged NP delivery of siRNA against bromodomain 4 (BRD4), a recently discovered target protein that regulates the development and progression of prostate cancer (PCa), can significantly inhibit PCa tumor growth.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/química , Microambiente Tumoral/fisiologia , Animais , Azepinas/química , Proteínas de Ciclo Celular , Liberação Controlada de Fármacos , Células HeLa , Xenoenxertos , Humanos , Concentração de Íons de Hidrogênio , Metacrilatos/química , Camundongos Nus , Proteínas Nucleares/genética , Imagem Óptica , Tamanho da Partícula , Peptídeos/química , Peptídeos/metabolismo , Polietilenoglicóis/química , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Distribuição Tecidual , Fatores de Transcrição/genética
6.
Anal Chem ; 89(15): 7861-7868, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28621521

RESUMO

Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.


Assuntos
Núcleo Celular/química , Corantes Fluorescentes/química , Microscopia Confocal , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Indóis/química , Camundongos , Nanopartículas/química , Polímeros/química , Temperatura , Imagem com Lapso de Tempo
7.
Angew Chem Int Ed Engl ; 56(39): 11896-11900, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28640986

RESUMO

Photothermal therapy (PTT) has shown significant potential for cancer therapy. However, developing nanomaterials (NMs)-based photothermal agents (PTAs) with satisfactory photothermal conversion efficacy (PTCE) and biocompatibility remains a key challenge. Herein, a new generation of PTAs based on two-dimensional (2D) antimonene quantum dots (AMQDs) was developed by a novel liquid exfoliation method. Surface modification of AMQDs with polyethylene glycol (PEG) significantly enhanced both biocompatibility and stability in physiological medium. The PEG-coated AMQDs showed a PTCE of 45.5 %, which is higher than many other NMs-based PTAs such as graphene, Au, MoS2 , and black phosphorus (BP). The AMQDs-based PTAs also exhibited a unique feature of NIR-induced rapid degradability. Through both in vitro and in vivo studies, the PEG-coated AMQDs demonstrated notable NIR-induced tumor ablation ability. This work is expected to expand the utility of 2D antimonene (AM) to biomedical applications through the development of an entirely novel PTA platform.


Assuntos
Raios Infravermelhos , Neoplasias/terapia , Fototerapia/métodos , Pontos Quânticos , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Dissulfetos/química , Ouro/química , Grafite/química , Humanos , Camundongos , Camundongos Nus , Molibdênio/química , Fósforo/química , Polietilenoglicóis/química , Análise Espectral/métodos , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Analyst ; 139(24): 6467-73, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25343161

RESUMO

A novel "ready-to-use" glucose test strip based on a polyurethane hollow nanofiber membrane was fabricated through facile co-axial electrospinning. By utilizing glucose oxidase and horseradish peroxidase in the core-phase solution, and a chromogenic agent either in the core solution (in which case 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) was used) or in the shell-phase solution (in which case o-dianisidine was used) for co-axial electrospinning, in situ co-encapsulation of the two enzymes within the hollow nano-chamber and incorporation of chromogenic agents either inside the nano-chamber or in the shell of the hollow nanofibers was realized. Such unique "all-in-one" feature enabled the prepared hollow nanofiber membrane-based test strips to be applied either as colorimetric sensors in solution or as an optical biosensor operated in the "dip-and-read" mode. When used as a colorimetric biosensor in solution, the test strip with o-dianisidine as chromogenic agent shows an excellent linear response range between 0.01 mM to 20 mM and a high apparent lumped activity recovery of 62.1% as compared to the reaction rate of the free bi-enzyme system. While the activity recovery of the test strip with ABTS as chromogenic agent is only 18.0%, and the test strip is found to be unstable due to spontaneous-oxidation of the ABTS. The o-dianisidine test strip was also applied as an optical biosensor, visible rufous color was quickly developed on the surface of the membrane upon dropping 10 µL of glucose sample, and an excellent correlation between differential diffusive reflectance of the test strip at 440 nm and glucose concentration was obtained in the range of 0.5-50 mM. The test strips also exhibited excellent long-term storage stability with a half-life at 25 °C as long as four months.


Assuntos
Técnicas Biossensoriais/instrumentação , Glicemia/análise , Membranas Artificiais , Nanofibras/química , Fitas Reagentes/análise , Benzotiazóis/metabolismo , Glicemia/metabolismo , Colorimetria/instrumentação , Corantes/análise , Corantes/metabolismo , Dianisidina/metabolismo , Enzimas Imobilizadas/metabolismo , Desenho de Equipamento , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Limite de Detecção , Nanofibras/ultraestrutura , Ácidos Sulfônicos/metabolismo
9.
Adv Mater ; 36(3): e2308726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37842855

RESUMO

Piezoelectric, pyroelectric, and ferroelectric materials are considered unique biomedical materials due to their dielectric crystals and asymmetric centers that allow them to directly convert various primary forms of energy in the environment, such as sunlight, mechanical energy, and thermal energy, into secondary energy, such as electricity and chemical energy. These materials possess exceptional energy conversion ability and excellent catalytic properties, which have led to their widespread usage within biomedical fields. Numerous biomedical applications have demonstrated great potential with these materials, including disease treatment, biosensors, and tissue engineering. For example, piezoelectric materials are used to stimulate cell growth in bone regeneration, while pyroelectric materials are applied in skin cancer detection and imaging. Ferroelectric materials have even found use in neural implants that record and stimulate electrical activity in the brain. This paper reviews the relationship between ferroelectric, piezoelectric, and pyroelectric effects and the fundamental principles of different catalytic reactions. It also highlights the preparation methods of these three materials and the significant progress made in their biomedical applications. The review concludes by presenting key challenges and future prospects for efficient catalysts based on piezoelectric, pyroelectric, and ferroelectric nanomaterials for biomedical applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Encéfalo , Catálise , Proliferação de Células
10.
J Am Chem Soc ; 135(22): 8350-6, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23581618

RESUMO

A large-scale synthetic strategy is developed for facile one-pot aqueous synthesis of silicon nanoparticles (SiNPs) yielding ∼0.1 g SiNPs of small sizes (∼2.2 nm) in 10 min. The as-prepared SiNPs feature strong fluorescence (photoluminescence quantum yield of 20-25%), favorable biocompatibility, and robust photo- and pH-stability. Moreover, the SiNPs are naturally water dispersible, requiring no additional post-treatment. Such SiNPs can serve as highly photostable bioprobes and are superbly suitable for long-term immunofluorescent cellular imaging.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Nanopartículas/química , Silício/química , Fluorescência , Células HeLa , Humanos , Imuno-Histoquímica , Modelos Moleculares , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície , Água/química
11.
Anal Chim Acta ; 1236: 340552, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396226

RESUMO

Spectral fluctuation is one of the main obstacles affecting the further development of LIBS, and it is also the current research hotspot and difficulty. To meet the requirements of industrial monitoring, a novel method named plasma image-spectrum fusion laser induced breakdown spectroscopy (PISF-LIBS) was proposed to correct the spectral fluctuation and improve the quantitative accuracy. In this method, by systematically analyzing the spectral radiation model, six main factors affecting the spectral stability were obtained. Further, the standard spectrum in the ideal plasma state which is not affected by these six factors was calculated, and the deviation from the actual spectrum was obtained. According to the above analysis, the calculated deviation was mainly affected by these six factors and can be estimated through them. Therefore, this study creatively proposed to use the effective information in the plasma images and spectra to indirectly characterize the deviation, so as to realize the correction of spectral fluctuation. To verify the wide applicability of PISF-LIBS in experimental conditions, the LIBS spectra of aluminum alloy obtained under four different experimental conditions were used. After PISF-LIBS correction, the R2 increased to more than 0.974, and the RMSE, MAPE and RSD of the prediction set decreased by 44.789%, 47.854% and 51.687% on average. To further verify the wide applicability of PISF-LIBS in experimental samples, alloy steel samples and pressed samples were also used. For alloy steel samples, after PISF-LIBS correction, the R2 increased to more than 0.996, and the RMSE, MAPE and RSD of the prediction set decreased by 48.337%, 52.856% and 25.819% evenly. For pressed samples, the R2 increased over 0.992, and the RMSE, MAPE and RSD of the prediction set decreased by 61.493%, 61.080% and 39.945% averagely. The experimental results prove the effectiveness and wide applicability of PISF-LIBS in spectral fluctuation correction.


Assuntos
Ligas , Lasers , Análise Espectral/métodos , Aço
12.
Nat Commun ; 12(1): 4777, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362904

RESUMO

The modulation of intracellular reactive oxygen species (ROS) levels is crucial for cellular homeostasis and determination of cellular fate. A sublethal level of ROS sustains cell proliferation, differentiation and promotes tumor metastasis, while a drastic ROS burst directly induces apoptosis. Herein, surface-oxidized arsenene nanosheets (As/AsxOy NSs) with type II heterojunction are fabricated with efficient ·O2- and 1O2 production and glutathione consumption through prolonging the lifetime of photo-excited electron-hole pairs. Moreover, the portion of AsxOy with oxygen vacancies not only catalyzes a Fenton-like reaction, generating ·OH and O2 from H2O2, but also inactivates main anti-oxidants to cut off the "retreat routes" of ROS. After polydopamine (PDA) and cancer cell membrane (M) coating, the engineered As/AsxOy@PDA@M NSs serve as an intelligent theranostic platform with active tumor targeting and long-term blood circulation. Given its narrow-band-gap-enabled in vivo fluorescence imaging properties, As/AsxOy@PDA@M NSs could be applied as an imaging-guided non-invasive and real-time nanomedicine for cancer therapy.


Assuntos
Nanomedicina , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Animais , Apoptose , Arsênio , Catálise , Linhagem Celular Tumoral , Glutationa/metabolismo , Homeostase , Humanos , Peróxido de Hidrogênio , Indóis , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros , Medicina de Precisão , Nanomedicina Teranóstica/métodos
13.
Nat Commun ; 12(1): 1124, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602928

RESUMO

Clay-based nanomaterials, especially 2:1 aluminosilicates such as vermiculite, biotite, and illite, have demonstrated great potential in various fields. However, their characteristic sandwiched structures and the lack of effective methods to exfoliate two-dimensional (2D) functional core layers (FCLs) greatly limit their future applications. Herein, we present a universal wet-chemical exfoliation method based on alkali etching that can intelligently "capture" the ultrathin and biocompatible FCLs (MgO and Fe2O3) sandwiched between two identical tetrahedral layers (SiO2 and Al2O3) from vermiculite. Without the sandwich structures that shielded their active sites, the obtained FCL nanosheets (NSs) exhibit a tunable and appropriate electron band structure (with the bandgap decreased from 2.0 eV to 1.4 eV), a conductive band that increased from -0.4 eV to -0.6 eV, and excellent light response characteristics. The great properties of 2D FCL NSs endow them with exciting potential in diverse applications including energy, photocatalysis, and biomedical engineering. This study specifically highlights their application in cancer theranostics as an example, potentially serving as a prelude to future extensive studies of 2D FCL NSs.


Assuntos
Silicatos de Alumínio/química , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Nanomedicina Teranóstica , Animais , Antineoplásicos/farmacologia , Células Hep G2 , Humanos , Luz , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Neoplasias/patologia , Fotoquimioterapia , Terapia Fototérmica , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/química , Temperatura , Distribuição Tecidual/efeitos dos fármacos
14.
J Mater Chem B ; 8(21): 4609-4619, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32373909

RESUMO

Tumor phototherapy is of great significance for the expansion and advancement of cancer treatment methods. Herein, two-dimensional boron nanosheets (B NSs) with a thickness of 2.4 nm exhibiting an excellent photothermal conversion performance were developed via a simple liquid phase ultrasonic stripping method. Following the loading of the photosensitizer agent chlorin e6 (Ce6) and subsequent modification with poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA), a B@Ce6-PAH-PAA NS nanomedicine exhibiting dual modal imaging-guided cancer photothermal therapy (PTT) and photodynamic therapy (PDT) properties, as well as outstanding stability was developed. The suitable nano-size (120 nm) of B@Ce6-PAH-PAA NSs can allow drugs to target tumor tissue with an enhanced permeability and retention effect (EPR). The cytotoxicity experiments demonstrated that B@Ce6-PAH-PAA NSs exhibited good biocompatibility even at high concentrations. Furthermore, the in vitro and in vivo experiments showed the excellent synergistic therapeutic effect of this nanomedicine for PTT and PDT.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Boro/química , Boro/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Poliaminas/química , Poliaminas/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Propriedades de Superfície
15.
J Biomed Nanotechnol ; 16(9): 1394-1405, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33419493

RESUMO

Colorectal cancer frustrates with high relapse after the traditional treatment including surgery and chemotherapy. Neoantigen-based therapeutic vaccine has achieved high response rate in the clinical trials rising the immunotherapy as a promising alternative for colorectal cancer. Herein, colon cancer cells derived neoantigen peptide Adpgk were employed to be co-encapsulated with black phosphorus quantum dots into liposome (Adpgk-BPQDs-liposome) as therapeutic vaccine. Adpgk-BPQDs-liposome were dispersed in F127 gel containing GM-CSF. The heat generated by black phosphorus (BP) under 808 nm near-infrared laser irradiation accelerates the F127 gel ablation and the release of GM-CSF, which recruit APC cells and prime the native T cells. The tumor bearing mice received the programmed cell death protein 1 (PD-1) checkpoint blockade antibody combined with photo-thermal gel intensively prevented the tumor progress. Furthermore, the tumor infiltrating CD8+ T cells were significantly increased which lead to the elimination of the tumor.


Assuntos
Antígenos , Imunoterapia , Peptídeos , Pontos Quânticos , Animais , Linfócitos T CD8-Positivos , Lipossomos , Camundongos , Recidiva Local de Neoplasia , Fósforo , Vacinas
16.
Nat Commun ; 11(1): 2778, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513979

RESUMO

The use of photothermal agents (PTAs) in cancer photothermal therapy (PTT) has shown promising results in clinical studies. The rapid degradation of PTAs may address safety concerns but usually limits the photothermal stability required for efficacious treatment. Conversely, PTAs with high photothermal stability usually degrade slowly. The solutions that address the balance between the high photothermal stability and rapid degradation of PTAs are rare. Here, we report that the inherent Cu2+-capturing ability of black phosphorus (BP) can accelerate the degradation of BP, while also enhancing photothermal stability. The incorporation of Cu2+ into BP@Cu nanostructures further enables chemodynamic therapy (CDT)-enhanced PTT. Moreover, by employing 64Cu2+, positron emission tomography (PET) imaging can be achieved for in vivo real-time and quantitative tracking. Therefore, our study not only introduces an "ideal" PTA that bypasses the limitations of PTAs, but also provides the proof-of-concept application of BP-based materials in PET-guided, CDT-enhanced combination cancer therapy.


Assuntos
Cobre/química , Hipertermia Induzida , Neoplasias/terapia , Fósforo/química , Fototerapia , Tomografia por Emissão de Pósitrons , Animais , Morte Celular , Linhagem Celular Tumoral , Terapia Combinada , Cobre/farmacocinética , Humanos , Íons , Camundongos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oligopeptídeos/química , Fósforo/farmacocinética , Polietilenoglicóis/química , Espectrofotometria Ultravioleta , Nanomedicina Teranóstica
17.
J Mater Chem B ; 7(40): 6247-6256, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31566627

RESUMO

In this manuscript, we demonstrate that the in situ growth of fluorescent silicon (Si) nanomaterials is stimulated when organosilicane molecules interact with different green teas, producing multifunctional Si nanomaterials with controllable zero- (e.g., nanoparticles), two- (e.g., nanosheets), and three- (e.g., nanospheres) dimensional nanostructures. Such green tea-originated Si nanomaterials (GTSN) exhibit strong fluorescence (quantum yield: ∼19-30%) coupled with ultrahigh photostability, as well as intrinsic anti-cancer activity with high specificity (e.g., the GTSN can accurately kill various cancer cells, rather than normal cells). Taking advantage of these unique merits, we further performed systematic in vitro and in vivo experiments to interrogate the mechanism of the green tea- and GTSN-related cancer prevention. Typically, we found that the GTSN entered the cell nuclei and induced cell apoptosis/death of cancer cells. The prepared GTSN were observed in vivo to accumulate in the tumour tissues after 14-d post-injection, leading to an efficient inhibition of tumour growth. Our results open new avenues for designing novel multifunctional and side-effect-free Si nanomaterials with controllable structures.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fluorescência , Nanoestruturas/administração & dosagem , Silício/química , Chá/química , Animais , Antineoplásicos/química , Apoptose , Materiais Biocompatíveis/química , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Nanoscale ; 10(30): 14455-14463, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30022196

RESUMO

The development of biocompatible and fluorescent gene carriers is of particular importance in the gene-delivery field. Taking advantage of the unique optical properties (e.g., strong and robust fluorescence) of silicon nanoparticles (SiNPs), as well as the excellent biocompatibility of silicon and protamine sulfate (PS, approved by the U.S. Food and Drug Administration (FDA) for clinical use), we herein present a type of PS-modified SiNP (PS@SiNP)-based gene carrier. Plasmid DNA (pDNA) with negative charges can be effectively bound onto the surface of the as-prepared fluorescent PS@SiNP-based gene carriers via electrostatic interactions. In particular, such resultant gene carriers possess stable and high fluorescence (photoluminescent quantum yield (PLQY): ∼25%). In addition, the PS@SiNP-based gene carriers show minimal toxic effects on normal mitochondrial metabolic activity (e.g., human retinal pigment epithelial (ARPE-19) cells preserve ∼90% of their cell viability after a 48 h incubation with the resultant carriers). Based on tracking the strong and stable fluorescence signals of SiNPs, the dynamic behavior of the PS@SiNP-based gene carriers in live cells (e.g., clathrin-mediated endocytosis, lysosomal escape, pDNA release, etc.) is investigated in a long-term manner, providing valuable information for understanding the intracellular behavior of gene vectors and designing high-efficacy gene carriers.


Assuntos
Fluorescência , Nanopartículas/química , Protaminas/química , Silício/química , Materiais Biocompatíveis , Linhagem Celular , Técnicas de Transferência de Genes , Humanos , Plasmídeos
19.
Adv Mater ; 29(33)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681981

RESUMO

The application of nanoparticles (NPs) to drug delivery has led to the development of novel nanotherapeutics for the treatment of various diseases including cancer. However, clinical use of NP-mediated drug delivery has not always translated into improved survival of cancer patients, in part due to the suboptimal properties of NP platforms, such as premature drug leakage during preparation, storage, or blood circulation, lack of active targeting to tumor tissue and cells, and poor tissue penetration. Herein, an innovative reactive oxygen species (ROS)-responsive polyprodrug is reported that can self-assemble into stable NPs with high drug loading. This new NP platform is composed of the following key components: (i) polyprodrug inner core that can respond to ROS for triggered release of intact therapeutic molecules, (ii) polyethylene glycol (PEG) outer shell to prolong blood circulation; and (iii) surface-encoded internalizing RGD (iRGD) to enhance tumor targeting and tissue penetration. These targeted ROS-responsive polyprodrug NPs show significant inhibition of tumor cell growth both in vitro and in vivo.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias , Polietilenoglicóis , Espécies Reativas de Oxigênio
20.
Theranostics ; 7(7): 1990-2002, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638484

RESUMO

The present work proposes a unique de-PEGylation strategy for controllable delivery of small interfering RNA (siRNA) using a robust lipid-polymer hybrid nanoparticle (NP) platform. The self-assembled hybrid NPs are composed of a lipid-poly(ethylene glycol) (lipid-PEG) shell and a polymer/cationic lipid solid core, wherein the lipid-PEG molecules can gradually dissociate from NP surface in the presence of serum albumin. The de-PEGylation kinetics of a series of different lipid-PEGs is measured with their respective NPs, and the NP performance is comprehensively investigated in vitro and in vivo. This systematic study reveals that the lipophilic tails of lipid-PEG dictate its dissociation rate from NP surface, determining the uptake by tumor cells and macrophages, pharmacokinetics, biodistribution, and gene silencing efficacy of these hybrid siRNA NPs. Based on our observations, we here propose that lipid-PEGs with long and saturated lipophilic tails might be required for effective siRNA delivery to tumor cells and gene silencing of the lipid-polymer hybrid NPs after systemic administration.


Assuntos
Produtos Biológicos/farmacocinética , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polietilenoglicóis/metabolismo , RNA Interferente Pequeno/farmacocinética , Adenocarcinoma/tratamento farmacológico , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células HeLa , Xenoenxertos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Células RAW 264.7 , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA