Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Small ; 13(24)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28489315

RESUMO

Formation of 3D mesostructures in advanced functional materials is of growing interest due to the widespread envisioned applications of devices that exploit 3D architectures. Mechanically guided assembly based on compressive buckling of 2D precursors represents a promising method, with applicability to a diverse set of geometries and materials, including inorganic semiconductors, metals, polymers, and their heterogeneous combinations. This paper introduces ideas that extend the levels of control and the range of 3D layouts that are achievable in this manner. Here, thin, patterned layers with well-defined residual stresses influence the process of 2D to 3D geometric transformation. Systematic studies through combined analytical modeling, numerical simulations, and experimental observations demonstrate the effectiveness of the proposed strategy through ≈20 example cases with a broad range of complex 3D topologies. The results elucidate the ability of these stressed layers to alter the energy landscape associated with the transformation process and, specifically, the energy barriers that separate different stable modes in the final 3D configurations. A demonstration in a mechanically tunable microbalance illustrates the utility of these ideas in a simple structure designed for mass measurement.


Assuntos
Nanoestruturas/química , Polímeros/química , Impressão Tridimensional
2.
Cell Transplant ; 29: 963689720973647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33300392

RESUMO

The healing of tendon-bone in the rotator cuff is featured by the formation of the scar tissues in the interface after repair. This study aimed to determine if the 3D-printed poly lactic-co-glycolic acid (PLGA) scaffolds loaded with bone marrow-derived mesenchymal stem cells (BMSCs) could augment the rotator cuff repair in the rabbits. PLGA scaffolds were generated by the 3D-printed technology; Cell Counting Kit-8 assay evaluated the proliferation of BMSCs; the mRNA and protein expression levels were assessed by quantitative real-time polymerase chain reaction and western blot, respectively; immunohistology evaluated the rotator cuff repair; biomechanical characteristics of the repaired tissues were also assessed. 3D-printed PLGA scaffolds showed good biocompatibility without affecting the proliferative ability of BMSCs. BMSCs-PLGA scaffolds implantation enhanced the cell infiltration into the tendon-bone injunction at 4 weeks after implantation and improved the histology score in the tendon tissues after implantation. The mRNA expression levels of collagen I, III, tenascin, and biglycan were significantly higher in the scaffolds + BMSCs group at 4 weeks post-implantation than that in the scaffolds group. At 8 and 12 weeks after implantation, the biglycan mRNA expression level in the BMSCs-PLGA scaffolds group was significantly lower than that in the scaffolds group. BMSCs-PLGA scaffolds implantation enhanced collagen formation and increased collagen dimeter in the tendon-bone interface. The biomechanical analysis showed that BMSCs-PLGA scaffolds implantation improved the biomechanical properties of the regenerated tendon. The combination of 3D-printed PLGA scaffolds with BMSCs can augment the tendon-bone healing in the rabbit rotator cuff repair model.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Lesões do Manguito Rotador/terapia , Alicerces Teciduais/química , Cicatrização/fisiologia , Animais , Células da Medula Óssea/fisiologia , Células-Tronco Mesenquimais/fisiologia , Coelhos
3.
Int J Biol Macromol ; 138: 79-88, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295489

RESUMO

This study investigates if the application of bone marrow-derived mesenchymal stem cells (BM-MSCs) loaded 3D-printed scaffolds could improve rotator cuff repair. The polylactic-co-glycolic acid (PLGA) scaffolds were fabricated by 3D print technology. Rabbit BM-MSCs were transfected with a recombinant adenovirus encoding bone morphogenic protein 12 (BMP-12). The effect of BM-MSCs loaded PLGA scaffolds on tendon-bone healing was assessed by biomechanical testing and histological analysis in a rabbit rotator cuff repair model. We found that the PLGA scaffolds had good biocompatible and biodegradable property. Overexpression of BMP-12 increased the mRNA and protein expression of tenogenic genes in BM-MSCs cultured with DMEM medium and seeded in PLGA scaffolds. When BMP-12-overexpressing BM-MSCs-loaded PLGA scaffolds were implanted into the injured rabbit supraspinatus tendon-bone junctions, the tendon-bone healing was improved. Our results suggest that application of BMP-12 overexpressing BM-MSCs loaded 3D-printed PLGA scaffolds promote the healing of tendon-bone interface, improve collagen organization and increase fibrocartilage in the rabbit rotor cuff repair. Rotator cuff regeneration achieved by BMP-12-overexpressing BM-MSCs-loaded PLGA scaffolds may represent a novel approach for the management of rotator cuff defect.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Células-Tronco Mesenquimais/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Impressão Tridimensional , Manguito Rotador/fisiologia , Alicerces Teciduais/química , Animais , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Coelhos , Regeneração , Tendões/fisiologia
4.
J Orthop Surg Res ; 13(1): 140, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880007

RESUMO

BACKGROUND: Osteoporotic vertebral compression fracture (OVCF) is a common type of fracture, and percutaneous kyphoplasty (PKP) is an eligible solution to it. Previous studies have revealed that both the volume and filling pattern of bone cement correlate with the clinical outcomes after PKP procedure. However, the role of bone cement distribution remains to be illustrated. METHODS: To retrospectively evaluate the relationship between the bone cement distribution and the clinical outcomes of unilateral PKP, we enrolled 73 OVCF patients receiving unilateral PKP treatment. All the intervened vertebrae were classified into three groups based on the bone cement distribution observed on postoperative X-ray films. Preoperative and postoperative radiographic parameters including the vertebral height and kyphotic Cobb angle were recorded, and anterior vertebral height restoration rate (AVHRR) and Cobb angle correction (CR) were then calculated to assess the vertebral height reconstruction. Preoperative and postoperative Oswestry Disability Index (ODI) and visual analogue scale (VAS) were adopted by interviewing patients to assess the mobility improvement and pain relief. Demographic data, body mass index (BMI), lumbar bone mineral density (evaluated by BMD T-score) of each patient, bone cement volume (BV), and bone cement extravasation (BE) were also recorded. Between- and within-group comparisons and multivariable correlation analysis were carried out to analyze the data. RESULTS: VAS and ODI scores were both significantly improved in all of the enrolled cases with no significant differences between groups. Among the three groups, the average age, AVHRR, and BV were significantly different. Occurrence of BE was significantly different between two of the three groups. AVHRR was demonstrated to correlate negatively with preoperative anterior vertebral height ratio and positively with preoperative Cobb angle, CR, diffusion score, and ODI changes. CONCLUSIONS: Bone cement distribution is a potential predictor to the reconstructive effects in unilateral PKP for OVCFs. Bone cement distribution is associated with AVHRR and BV, as well as the risk of BE occurrence. Greater bone cement distribution may indicate better vertebral restoration along with a higher BE risk.


Assuntos
Cimentos Ósseos , Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Idoso , Feminino , Fraturas por Compressão/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Fraturas por Osteoporose/cirurgia , Estudos Retrospectivos , Fraturas da Coluna Vertebral , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA