Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930884

RESUMO

Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol-cerium-quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics.


Assuntos
Lesão Pulmonar Aguda , Cério , Manitol , Nanopartículas , Polímeros , Quercetina , Lesão Pulmonar Aguda/tratamento farmacológico , Quercetina/farmacologia , Quercetina/química , Animais , Manitol/química , Manitol/uso terapêutico , Nanopartículas/química , Camundongos , Polímeros/química , Cério/química , Cério/farmacologia , Cério/uso terapêutico , Rutina/química , Rutina/farmacologia , Rutina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Sinergismo Farmacológico , Modelos Animais de Doenças , Lipopolissacarídeos
2.
Mol Pharm ; 20(9): 4478-4490, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37524050

RESUMO

Tanshinone IIA (TS-IIA) and salvianic acid A (SAA) are the main pharmacological active constituents of Danshen, which exhibit potent effects on atherosclerosis. A combination of TS-IIA and SAA might exert a synergistic antiatherosclerotic effect. However, the opposite solubility profiles of TS-IIA and SAA might lead to difficulty in achieving a synergistic combined effect of the two active components. Therefore, in this work, we fabricated a ROS-responsive prodrug micelle for the codelivery of TS-IIA and SAA (TS-IIA-PM) by self-assembling amphiphilic block copolymer PEG5000-SAA/PLA10000-APBA. The amphiphilic polymer was characterized by 1H NMR, FTIR, and alizarin red S competition tests. The ROS responsiveness of TS-IIA-PM was evidenced by time-course monitoring of particle size and morphology changes and drug release behavior in the presence of 1 mM H2O2. We found TS-IIA-PM was stable according to its critical micelle concentration and the unchanged particle sizes in 10% FBS for 7 days. The results of in vitro and in vivo tests revealed that TS-IIA-PM was safe and biocompatible. Furthermore, it was observed that TS-IIA and prodrug micelle could produce synergistic antiatherosclerotic effect based on the results of the antioxidant study, which was further confirmed by a series of pharmocodynamics studies, such as in vitro DiI-oxLDL uptake study, oil red O staining, cholesterol efflux study, inflammatory cytokine analysis, in vivo CD68 immunostaining, and lipid disposition staining studies. Collectively, TS-IIA-PM holds great potential for the safe and efficient codelivery of TS-IIA and SAA for synergistic antiatherosclerosis.


Assuntos
Pró-Fármacos , Pró-Fármacos/química , Micelas , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polímeros/química
3.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458701

RESUMO

Keratin liposomes have emerged as a useful topical drug delivery system given theirenhanced ability to penetrate the skin, making them ideal as topical drug vehicles. However, the mechanisms of the drug penetration enhancement of keratin liposomes have not been clearly elucidated. Therefore, licochalcone A(LA)-loaded skin keratin liposomes (LALs) were prepared to investigate their mechanisms of penetration enhancement on the skin and inB16F10 cells. Skin deposition studies, differential scanning calorimetry (DSC), attenuated total reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and skin distribution and intracellular distribution studies were carried out to demonstrate the drug enhancement mechanisms of LALs. We found that the optimal application of LALs enhanced drug permeation via alterations in the components, structure, and thermodynamic properties of the stratum corneum (SC), that is, by enhancing the lipid fluidization, altering the skin keratin, and changing the thermodynamic properties of the SC. Moreover, hair follicles were the main penetration pathways for the LA delivery, which occurred in a time-dependent manner. In the B16F10 cells, the skin keratin liposomes effectively delivered LA into the cytoplasm without cytotoxicity. Thus, LAL nanoparticles are promising topical drug delivery systems for pharmaceutical and cosmetic applications.


Assuntos
Lipossomos , Absorção Cutânea , Administração Cutânea , Chalconas , Queratinas/metabolismo , Lipossomos/química , Pele
4.
Nanomedicine ; 32: 102323, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186693

RESUMO

Reconstituted high-density lipoproteins (rHDLs) hold promise as nanocarriers for atherosclerosis-targeted delivery, with biofunctions typified by mediating cholesterol efflux. The paradox is how rHDL offloads the delivered drugs into atherosclerotic foam cells, while simultaneously transferring cholesterol out of cells. Herein, simvastatin-loaded discoidal rHDL (ST-d-rHDL), constructed based on established paradigms, was employed to investigate its basic trafficking mechanism in foam cells. As proved, ST-d-rHDL was resecreted via lysosomal and Golgi apparatus-recycling endosome-mediated pathways following clathrin-mediated endocytosis. And the resecretion ratio reached 60% within 6-h chase with excessive ST-d-rHDLs. During the rHDL resecretion, 39% of cellular cholesterol efflux was detected, accompanied by 85% of the encapsulated cargo released intracellularly. Furthermore, the recycling rate was demonstrated to be promoted by smaller rHDL size and higher cellular lipid contents. Collectively, endocytic recycling confers the synergism in ST-d-rHDL to coordinate cholesterol efflux and intracellular drug release, providing new insights into design of biofunctional rHDL.


Assuntos
Colesterol/metabolismo , Endocitose , Lipoproteínas HDL/química , Preparações Farmacêuticas/metabolismo , Sinvastatina/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Fluorescência , Células Espumosas/citologia , Células Espumosas/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipossomos/ultraestrutura , Camundongos , Tamanho da Partícula , Células RAW 264.7 , Rodaminas/química
5.
AAPS PharmSciTech ; 23(1): 12, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34881399

RESUMO

The purpose of this paper is to prepare a stable apigenin nanosuspension with a drug concentration of 1.11 mg/mL through green and efficient antisolvent method. Compared with the traditional preparation process that may use toxic reagents, in this study, a green and effective strategy was applied for the preparation of stable apigenin nanosuspension by using an antisolvent method with PEG 400 as antisolvent to improve the solubility and bioavailability. It was found that the particle size of apigenin nanosuspension was about 280 nm, and the solubility and dissolution of the nanosuspension were 33 and 3 times higher than that of the apigenin, respectively. Pharmacokinetic study showed that the Cmax and AUC 0-8 h values of the nanosuspension in fasting rats achieved about 6- and 2.5-fold enhancement than that of the apigenin, respectively. Stability test showed that the apigenin nanosuspension could be stored stably for 12 months at 25℃. Taken together, the antisolvent method with PEG 400 was proven to be a green and effective method to prepare the stable nanosuspension of poorly soluble drugs.


Assuntos
Apigenina , Nanopartículas , Animais , Disponibilidade Biológica , Tamanho da Partícula , Polietilenoglicóis , Ratos , Solubilidade , Suspensões
6.
AAPS PharmSciTech ; 21(5): 159, 2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32476076

RESUMO

Cryptotanshinone (CPT) is an efficacious acne treatment, while niosomal hydrogel is a known effective topical drug delivery system that produces a minimal amount of irritation. Three-dimensional (3D) printing technologies have the potential to improve the field of personalized acne treatment. Therefore, this study endeavored to develop a 3D-printed niosomal hydrogel (3DP-NH) containing CPT as a topical delivery system for acne therapy. Specifically, CPT-loaded niosomes were prepared using a reverse phase evaporation method, and the formulation was optimized using a response surface methodology. In vitro characterization showed that optimized CPT-loaded niosomes were below 150 nm in size with an entrapment efficiency of between 67 and 71%. The CPT-loaded niosomes were added in a dropwise manner into the hydrogel to formulate CPT-loaded niosomal hydrogel (CPT-NH), which was then printed as 3DP-CPT-NH with specific drug dose, shape, and size using an extrusion-based 3D printer. The in vitro release behavior of 3DP-CPT-NH was found to follow the Korsmeyer-Peppas model. Permeation and deposition experiments showed significantly higher rates of transdermal flux, Q24, and CPT deposition (p < 0.05) compared with 3D-printed CPT-loaded conventional hydrogel (3DP-CPT-CH), which did not contain niosomes. In vivo anti-acne activity evaluated through an acne rat model revealed that 3DP-CPT-NH exhibited a greater anti-acne effect with no skin irritation. Enhanced skin hydration, wide inter-corneocyte gaps in the stratum corneum and a disturbed lipid arrangement may contribute towards the enhanced penetration properties of CPT. Collectively, this study demonstrated that 3DP-CPT-NH is a promising topical drug delivery system for personalized acne treatments.


Assuntos
Acne Vulgar/tratamento farmacológico , Hidrogéis/química , Fenantrenos/administração & dosagem , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/farmacologia , Masculino , Tamanho da Partícula , Fenantrenos/química , Impressão Tridimensional , Ratos , Pele/metabolismo , Absorção Cutânea
7.
Biomacromolecules ; 20(1): 478-489, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30516950

RESUMO

In this work, we report on an ATP-responsive low-molecular-weight polyethylenimine (LMW-PEI)-based supramolecular assembly. It formed via host-guest interaction between PEI (MW = 1.8 kDa)-α-cyclodextrin (α-CD) conjugates and PEI1.8k-phenylboronic acid (PBA) conjugates. The host-guest interaction between PEI1.8k-α-CD and PEI1.8k-PBA was confirmed by the 2D-NOESY chromatogram experiment and competition test. The ATP-responsive property of the supramolecular assembly was evaluated by a series of ATP-triggered degradation and siRNA release studies in terms of fluorescence resonance energy transfer, agarose gel electrophoresis assay, and the time course monitoring of the particle size and morphology. Confocal laser scanning microscopy confirmed the intracellular disassembly of the supramolecular polymer and the release of siRNA. The supramolecular assembly showed high buffering capability and was capable of protecting siRNA from RNase degradation. It had high cytocompatibility according to in vitro cytotoxicity and hemolysis assays. LMW-PEI-based supramolecular assembly facilitated cellular entry of siRNA via energy-dependent endocytosis. Moreover, the assembly/SR-A siRNA polyplexes at N/P ratio of 30 was most effective in knocking down SR-A mRNA and inhibiting uptake of modified LDL. Taken together, this work shows that ATP-responsive LMW-PEI-based supramolecular assembly is a promising gene vector and has potential application in treating atherosclerosis.


Assuntos
Trifosfato de Adenosina/química , Técnicas de Transferência de Genes , Nanoconjugados/química , Polietilenoimina/química , RNA Interferente Pequeno/química , Animais , Ácidos Borônicos/química , Células Cultivadas , Ciclodextrinas/química , Endocitose , Hemólise/efeitos dos fármacos , Camundongos , Nanoconjugados/toxicidade , Células RAW 264.7 , Coelhos
8.
Bioconjug Chem ; 28(2): 438-448, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28004910

RESUMO

An atorvastatin calcium (AT)-loaded dextran sulfate (DXS)-coated core-shell reconstituted high density lipoprotein (rHDL), termed AT-DXS-LP-rHDL, was developed for targeted drug delivery to macrophages and suppression of inflammation via the high affinity of DXS with scavenge receptor class AI (SR-AI) as well as depletion of intracellular cholesterol by apolipoprotein A-I (apoA-I)-mediated cholesterol efflux. These core-shell nanoparticles comprising an AT-loaded negatively charged poly(lactide-co-glycolide) (PLGA) core and a cationic lipid bilayer shell were prepared by nanoprecipitation method followed by thin film hydration and extrusion. The nanoparticles were further functionalized with apoA-I and DXS via sodium cholate mediation and electrostatic interaction, respectively. The core-shell structure and the surface coating of apoA-I and DXS were verified by the increased particle size, inverted zeta potential, and reduced in vitro drug release rate. The TEM image further confirmed the entrapment of the PLGA nanoparticles in the aqueous interior of the liposomes. In vitro cell viability assay showed the biocompatibility of the AT-loaded nanocarriers. The cellular uptake study illustrated that the targeting efficacy to macrophages increased in the following order: PLGA nanoparticles (P-NP), core-shell nanoparticles (LP-NP), core-shell rHDL (LP-rHDL), and DXS-LP-rHDL. Moreover, cellular drug efficacy of AT-loaded nanoparticles in preventing macrophage-derived foam cell formation and inflammation such as intracellular lipid deposition, cholesterol esters content, DiI-oxLDL uptake, cholesterol efflux, and secretion of TNF-α, IL-6, and IL-10 was much better than that of the drug-free nanoparticles, consistent with the results of cellular uptake study. Collectively, AT-DXS-LP-rHDL, as multifunctional carriers, could not only deliver more drug to macrophages, but also present antiatherogenic actions of the biofunctional nanocarriers through damping oxidized low density lipoproteins (oxLDL) uptake and promoting cholesterol efflux.


Assuntos
Aterosclerose/tratamento farmacológico , Sulfato de Dextrana/química , Portadores de Fármacos/química , Lipoproteínas HDL/química , Macrófagos/metabolismo , Animais , Atorvastatina/química , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Transporte Biológico , Colesterol/metabolismo , Portadores de Fármacos/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Espaço Intracelular/metabolismo , Ácido Láctico/química , Lipoproteínas LDL/metabolismo , Camundongos , Modelos Moleculares , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Conformação Proteica , Células RAW 264.7 , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo
9.
Biomacromolecules ; 18(8): 2286-2295, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28738148

RESUMO

A biofunctional polymer-lipid hybrid high-density lipoprotein-mimicking nanoparticle (HNP) loading anti-miR155 was constructed for combined antiatherogenic effects on macrophages. The HNP consisted of an anti-miR155 core condensed by acid-labile polyethylenimine (acid-labile PEI) polymers and a lipid bilayer coat that was decorated with apolipoprotein A-1, termed acid-labile PEI/HNP. The acid-labile PEI was synthesized with low-molecular-weight PEI and glutaraldehyde to reduce the cytotoxicity and facilitate nucleic acids escaping from acidic endolysosomes. The increased silencing efficiency of acid-labile PEI/HNP was ascribed to the clathrin-mediated endocytosis and successful endolysosomal escape. Decreased intracellular reactive oxygen species production and DiI-oxLDL uptake revealed the antioxidant activities of both anti-miR155 and HNP. Cholesterol efflux assay indicated the potential of HNP in reverse cholesterol transport. Collectively, the acid-labile PEI/HNP not only realized the efficacy of anti-miR155 in macrophages but also exerted the antiatherosclerotic biofunction of HNP.


Assuntos
Colesterol/metabolismo , Lipoproteínas HDL , Macrófagos/metabolismo , MicroRNAs/antagonistas & inibidores , Nanopartículas/química , Polietilenoimina , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacologia , Camundongos , Polietilenoimina/química , Polietilenoimina/farmacologia , Células RAW 264.7
10.
Int J Pharm ; 617: 121612, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218899

RESUMO

Poly(vinyl alcohol) (PVA) and carbomer were used as the hydrogel system to fabricate glabridin-loaded hydrogel-forming microneedles (HFMNs) by chemical cross-linking (CCMNs) and physical cross-linking (PCMNs). The properties and drug permeation effects of glabridin-loaded HFMNs with different methods were compared. They both owned excellent shapes, mechanical and insertion properties. PCMNs showed collapsed shapes during swelling due to the low cross-linking rate and high porosity, which probably results in resealing of skin pores during transdermal drug delivery. However, CCMNs could rapidly swell within 2 h with slightly bending. The infrared spectra indicate that CCMNs and PCMNs might form the hydrogel network by generating hydrogen and covalent bonds, respectively. The in vitro release studies showed that cumulative permeation amount within 24 h (1654 µg/cm2) of CCMNs significantly higher than that (372 µg/cm2) achieved by PCMNs and that (118 µg/cm2) achieved by glabridin-loaded gel. The skin barrier recovery test suggests the desirable security of both microneedles (MNs), notwithstanding the presence of mild erythema in the mouse skin applied CCMNs. These results indicate that CCMNs were more desirable for glabridin delivery using PVA and carbomer as a skeleton of the hydrogel network.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Administração Cutânea , Animais , Sistemas de Liberação de Medicamentos/métodos , Isoflavonas , Camundongos , Agulhas , Fenóis , Álcool de Polivinil/química
11.
Colloids Surf B Biointerfaces ; 215: 112511, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35483256

RESUMO

Salvia miltiorrhiza and Carthamus tinctorius are traditional Chinese medicines that have been widely used for the treatment of cardiovascular disease. Salvianic acid A (SAA), salvianic acid B (SAB), protocatechuic aldehyde (PCA) and hydroxysafflor yellow A (HSYA) are the major hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius, all of which have been documented as active compounds for the prevention and treatment of atherosclerosis (AS). However, high aqueous solubility, low permeability and poor stability properties of the four hydrophilic polyphenols might influence their bioavailability and thus hinder their clinical potential. In this work, we introduced a green and highly efficient method for the efficient delivery of the four hydrophilic components via metal-phenolic network. The four coordination polymers of SAA, SAB, PCA and HSYA were successfully fabricated, and confirmed by UV-vis, FTIR, XPS, ICP-MS and dynamic light scattering analysis. We found all of them displayed potent antioxidant activity, good biocompatibility and stability. Impressively, the four coordination polymers showed remarkably enhanced anti-atherosclerotic effect compared with free drugs. Collectively, metal-phenolic network-based coordination polymer might show great potential for safe and efficient delivery of the hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for anti-atherosclerotic therapy.


Assuntos
Aterosclerose , Carthamus tinctorius , Medicamentos de Ervas Chinesas , Salvia miltiorrhiza , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Polímeros , Polifenóis/farmacologia
12.
ACS Biomater Sci Eng ; 7(11): 5048-5063, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648280

RESUMO

Specific delivery of NCEH1 plasmid is a promising approach to boost the cholesterol removal from lipid-laden macrophages for antiatherosclerosis. Polyethylenimine (PEI) is one of the most efficient gene carriers among nonviral vectors. However, the high transfection activity of PEI is always accompanied by profound cytotoxicity. To tackle the paradox between transfection efficiency and safety, we constructed a novel ATP-responsive multifunctional supramolecular polymer by cross-linking functionalized low-molecular-weight PEI via a boronic ester bond for NCEH1 plasmid delivery. The supramolecular polymer could condense NCEH1 plasmids to form stable nanosized polyplexes when the w/w ratios of the polymer and gene were higher than 2. ATP-triggered degradation of the polymer and pDNA release were characterized by a series of studies, including 1H NMR, 31P NMR, XPS, agarose gel electrophoresis, and ethidium bromide exclusion tests. In addition, the changes in particle size and morphology were observed in the presence of ATP. Interestingly, the supramolecular polymer showed broad spectrum antioxidant activities by measuring the elimination rates of different reactive oxygen species. In addition, the supramolecular polymer displayed a high buffering capability and good cytocompatibility as demonstrated by the results of the buffering capacity, a hemolysis assay, and a cytotoxicity test. Importantly, it was revealed that the supramolecular polymer/NCEH1 plasmid polyplex formulated at a w/w ratio of 20 was most effective in enhancing cholesterol removal from lipid-laden macrophages and reducing the accumulation of lipid droplets as evidenced by transfection study, cholesterol efflux assay, and oil red O staining studies. Collectively, the ATP-responsive multifunctional supramolecular polymer holds great potential for safe and efficient gene delivery for antiatherosclerosis.


Assuntos
DNA , Polímeros , Trifosfato de Adenosina , Colesterol , DNA/genética , Macrófagos
13.
Expert Opin Drug Deliv ; 16(4): 363-376, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31007095

RESUMO

INTRODUCTION: Despite the great therapeutic potential of gene therapy for treating critical diseases, the clinical application is limited by lack of safe and effective gene delivery vectors. Nonviral gene vectors have attracted tremendous attention due to the favorable loading capacity and facile manufacture. Among them, polyethylenimine-based gene vectors (PEIs) hold great promise for highly efficient gene delivery. AREAS COVERED: In this review, we outline the multiple biological barriers associated with gene delivery process and point out several challenges exist in the clinical usage of PEIs. We then provide an overview of the most impressive progresses made to overcome such challenges in recent years, including modifications of PEIs (i.e. to enhance biocompatibility, specific targeting effect, and buffering capacity) and stimuli-responsive strategies (i.e. endogenous and exogenous stimuli) for safe and efficient gene delivery. EXPERT OPINION: Rational modification of PEIs with diverse functionalized segments or the development of stimuli-responsive PEIs is an appealing strategy to meet some requirements involved in gene delivery. Nevertheless, further optimization by combining the two strategies is needed for the maximized transfection efficiency and minimized side effects, shedding new light on the development of nonviral gene delivery for clinical application.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Polietilenoimina/química , Vetores Genéticos , Humanos , Transfecção
14.
J Control Release ; 283: 241-260, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885417

RESUMO

Aberrant lipid accumulation in both endothelial cells and macrophage foam cells as well as atherogenic inflammation in the atherosclerotic lesions, if left untreated, eventually lead to plaque rupture and arterial damage, causing devastating consequences. In this report, we explore a dual cell therapy modality by designing a dual-targeting core-shell nanoplatform to deliver siRNA against lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 siRNA) and atorvastatin (AT) to control lipid trafficking to and from endothelial cells and macrophages in the atherosclerotic lesions selectively and sequentially. The core-shell nanoparticles are composed of a poly(D,L-lactide-co-glycolide) (PLGA) core for AT encapsulation and siRNA complexation and three external layers: a lipid bilayer as the inner layer for cholesterol receiving, apolipoprotein A-I (apoA-I) as the intermediate layer for macrophage targeting, and hyaluronic acid (HA)-DOPE as the outermost layer for endothelial cell targeting. The nanoplatform is designed such that it can shed the HA-DOPE layer extracellularly upon encountering HAase type II (Hyal-2) to expose the intermediate apoA-I layer for enhanced entry into macrophages. We thoroughly characterized dual-targeting bifunctional core-shell nanoparticles and studied the dual-targeting mechanism and biofunctions of the nanoplatform both in vitro and in vivo. Following a 12-week biweekly dosing regimen, the core-shell nanoparticles coated with high molecular weight HA (200 kDa) exhibited the most potent anti-atherosclerotic activities as evidenced by 39% plaque size reduction, 63% decrease in lipid accumulation, 68% reduction in CD68+ macrophage content and 74% reduction in monocyte chemoattractant protein 1 (MCP-1) content compared with the baseline group. Taken together, the dual-targeting bifunctional core-shell nanoparticles exert a synergistic therapeutic effect on both endothelial cells and macrophages as a dual cell therapy modality to regress atherosclerotic plaques.


Assuntos
Atorvastatina/administração & dosagem , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Placa Aterosclerótica/terapia , RNA Interferente Pequeno/administração & dosagem , Receptores Depuradores Classe E/genética , Animais , Colesterol/administração & dosagem , Endocitose , Humanos , Ácido Hialurônico/administração & dosagem , Masculino , Camundongos Knockout para ApoE , Nanopartículas/administração & dosagem , Fosfatidiletanolaminas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Células THP-1
15.
Int J Nanomedicine ; 12: 533-558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144137

RESUMO

Increasing evidence has highlighted the pivotal role that intimal macrophage (iMΦ) plays in the pathophysiology of atherosclerotic plaques, which represents an attractive target for atherosclerosis treatment. In this work, to address the insufficient specificity of conventional reconstituted high-density lipoprotein (rHDL) for iMΦ and its limited cholesterol efflux ability, we designed a hyaluronan (HA)-anchored core-shell rHDL. This nanoparticle achieved efficient iMΦ-targeted drug delivery via a multistage-targeting approach, and excellent cellular cholesterol removal. It contained a biodegradable poly (lactic-co-glycolic acid) (PLGA) core within a lipid bilayer, and apolipoprotein A-I (apoA-I) absorbing on the lipid bilayer was covalently decorated with HA. The covalent HA coating with superior stability and greater shielding was favorable for not only minimizing the liver uptake but also facilitating the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors in atherosclerotic plaques. The ultimate iMΦ homing was achieved via apoA-I after HA coating degraded by hyaluronidase (HAase) (abundant in atherosclerotic plaque). The multistage-targeting mechanism was revealed on the established injured endothelium-macrophage co-culture dynamic system. Upon treatment with HAase in vitro, the nanoparticle HA-(C)-PLGA-rHDL exhibited a greater cholesterol efflux capacity compared with conventional rHDL (2.43-fold). Better targeting efficiency toward iMΦ and attenuated liver accumulation were further proved by results from ex vivo imaging and iMΦ-specific fluorescence localization. Ultimately, HA-(C)-PLGA-rHDL loaded with simvastatin realized the most potent anti-atherogenic efficacies in model animals over other preparations. Thus, the HAase-responsive HDL-mimetic nanoparticle was shown in this study to be a promising nanocarrier for anti-atherogenic therapy, in the light of efficient iMΦ-targeted drug delivery and excellent function of mediating cellular cholesterol efflux.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hialuronoglucosaminidase/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Nanopartículas/química , Placa Aterosclerótica/tratamento farmacológico , Túnica Íntima/metabolismo , Animais , Colesterol/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Ácido Hialurônico/química , Ácido Láctico/química , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Placa Aterosclerótica/patologia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células RAW 264.7 , Coelhos , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA