Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pharm Dev Technol ; 29(3): 176-186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376879

RESUMO

OBJECTIVE: To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE: The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS: This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS: The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION: These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.


Assuntos
Glucosídeos , Ácido Glicirretínico , Lipossomos , Monoterpenos , Lipossomos/farmacologia , Ácido Glicirretínico/farmacologia , Fígado , Sistemas de Liberação de Medicamentos/métodos
2.
Carbohydr Polym ; 341: 122348, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876718

RESUMO

Antibiotic abuse is increasing the present rate of drug-resistant bacterial wound infections, producing a significant healthcare burden globally. Herein, we prepared a pH-responsive CMCS/PVP/TA (CPT) multifunctional hydrogel dressing by embedding the natural plant extract TA as a nonantibiotic and cross-linking agent in carboxymethyl chitosan (CMCS) and polyvinylpyrrolidone (PVP) to prompt wound healing. The CPT hydrogel demonstrated excellent self-healing, self-adaptive, and adhesion properties to match different wound requirements. Importantly, this hydrogel showed pH sensitivity and exhibited good activity against resistant bacteria and antioxidant activity by releasing TA in case of bacterial infection (alkaline). Furthermore, the CPT hydrogel exhibited coagulant ability and could rapidly stop bleeding within 30 s. The biocompatible hydrogel effectively accelerated wound healing in a full-thickness skin defect model by thickening granulation tissue, increasing collagen deposition, vascular proliferation, and M2-type macrophage polarization. In conclusion, this study demonstrates that multifunctional CPT hydrogel offers a candidate material with potential applications for infected skin wound healing.


Assuntos
Antibacterianos , Bandagens , Quitosana , Hidrogéis , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Quitosana/síntese química , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Animais , Concentração de Íons de Hidrogênio , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Povidona/química , Masculino , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Pele/efeitos dos fármacos , Pele/patologia
3.
Int J Biol Macromol ; 224: 523-532, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280178

RESUMO

The mechanical mismatch between soft hydrated tissues and sutures has become a common negative impact on wound healing process. A novel method of coating multilayer polymer shells is thus reported to improve the mechanical performance of hydrogel sutures. It is suitable for tissue patching and shows advantages of convenient, efficient, and biosafety. Specifically, a precursor hydrogel (Cu@CMC) consisted of carboxymethyl chitosan and copper modified by carbon dots was used as the inner sheath, and then bonding the precursor hydrogel sheath with toughening polyethylene glycol network by anchoring sites composited from rigid chitosan shell integrated a whole structure. Subsequently, the whole system was soaked with EtOH, and rapid dehydration of EtOH was used to accelerate the entanglement process between the two coatings by constricting the molecular chains. Finally, an ideal suture (Cu-fiber) with both toughness and rigidness was obtained. The data showed that the tensile strength and biosafety of the hydrogel sutures prepared by the new strategy were significantly improved, and the skin, liver and vessel of rodents can be sutured without secondary damage. Moreover, it can inhibit inflammation response and promote the healing process of skin wound, indicating that the Cu-fiber will become a great candidate for tissue patching.


Assuntos
Quitosana , Quitosana/química , Polietilenoglicóis/química , Pele , Cicatrização , Hidrogéis/química
4.
Int J Biol Macromol ; 191: 171-181, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34509521

RESUMO

In this study, cattail was researched as a natural cellulose source to extract cellulose. Dewaxing, alkali and bleaching treatments were carried out for the cattail fibers (CFs). The FTIR, SEM and XRD results indicated that hemicellulose and lignin were successfully removed from the CFs, and the content of cattail cellulose increased from 41.66 ± 1.11% to 89.72 ± 1.07%. Subsequently, cellulose aerogel was prepared by the extracted cattail cellulose. The Zeolitic imidazolate framework-8 (ZIF-8) was uniformly loaded onto the surface of cellulose aerogel by the in situ growth, and ZIF-8 Cattail Cellulose Aerogel (ZCCA) was finally prepared. The SEM, FTIR, XRD and TGA results further confirmed the successful preparation of ZCCA. Additionally, the results of the adsorption experiment showed that ZCCA had excellent adsorption performance for enrofloxacin, and the maximum adsorption capacity of enrofloxacin reached 172.09 mg·g-1 while showing good reusability. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Thermodynamic studies showed that the adsorption of enrofloxacin was a spontaneous endothermic reaction and that the adsorption mechanism involves the interaction of hydrogen bonds, electrostatic and π-π stacking.


Assuntos
Antibacterianos/química , Celulose/análogos & derivados , Enrofloxacina/química , Nanogéis/química , Purificação da Água/métodos , Adsorção , Antibacterianos/análise , Enrofloxacina/análise , Ligação de Hidrogênio , Imidazóis/química , Estruturas Metalorgânicas/química , Typhaceae/química , Águas Residuárias/química
5.
Carbohydr Polym ; 259: 117710, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33673989

RESUMO

Harmful algal blooms induce severe environmental problems. It is challenging to remove algae by the current available treatments involving complicate process and costly instruments. Here, we developed a CaO2@PEG-loaded water-soluble self-branched chitosan (CP-SBC) system, which can remove algae from water in one-step without additional instrumentation. This approach utilizes a novel flocculant (self-branched chitosan) integrated with flotation function (induced by CaO2@PEG). CP-SBC exhibited better flocculation performance than commercial flocculants, which is attributed to the enhanced bridging and sweeping effect of branched chitosan. CP-SBC demonstrated outstanding biocompatibility, which was verified by zebrafish test and algae activity test. CaO2@PEG-loaded self-branched chitosan can serve as an "Air flotation system" to spontaneous float the flocs after flocculation by sustainably released O2. Furthermore, CP-SBC can improve water quality through minimizing dissolved oxygen depletion and reducing total phosphorus concentrations.


Assuntos
Quitosana/química , Proliferação Nociva de Algas/fisiologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Compostos de Cálcio/química , Floculação/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos dos fármacos , Cinética , Larva/efeitos dos fármacos , Óxidos/química , Oxigênio/química , Fósforo/química , Polietilenoglicóis/química , Porosidade , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
6.
Biomed Pharmacother ; 118: 109257, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377472

RESUMO

Combination treatment through simultaneous delivery of anticancer drugs and gene with nano-formulation has been demonstrated to be an elegant and efficient approach for colorectal cancer therapy. Recently, sorafenib being studied in combination therapy in colorectal cancer (CRC) attracted attention of researchers. On the basis of our previous study, pigment epithelium-derived factor (PEDF) loaded nanoparticles showed good effect on CRC in vitro and in vivo. Herein, we designed a combination therapy for sorafenib (Sora), a multi-kinase inhibitor and PEDF, a powerful antiangiogenic gene, in a nano-formulation aimed to increase anti-tumor effect on CRC for the first time. Sora and PEDF were simultaneously encapsulated in PEG-PLGA based nanoparticles by a modified double-emulsion solvent evaporation method. The obtained co-encapsulated nanoparticles (Sora@PEDF-NPs) showed high entrapment efficiency of both Sora and PEDF - and exhibited a uniform spherical morphology. The release profiles of Sora and PEDF were in a sustained manner. The most effective tumor growth inhibition in the C26 cells and C26-bearing mice was observed in the Sora@PEDF-NPs in comparison with none-drug nanoparticles, free Sora, mono-drug nanoparticles (Sora-NPs and PEDF-NPs) and the mixture of Sora-NPs and equivalent PEDF-NPs (Mix-NPs). More importantly, Sora@PEDF-NPs showed lower toxicity than free Sora in mice according to the acute toxicity test. The serologic biochemical analysis and mice body weight during therapeutic period revealed that Sora@PEDF-NPs had no obvious toxicity. All the data demonstrated that the simultaneously loaded nanoparticles with multi-kinase inhibitor and anti-angiogenic gene might be one of the most potential formulations in the treatment of colorectal carcinoma in clinic and worthy of further investigation.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Terapia Genética , Nanopartículas/química , Polímeros/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Proteínas do Olho/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Fatores de Crescimento Neural/química , Serpinas/química , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Testes de Toxicidade Aguda , Resultado do Tratamento
7.
Adv Mater ; 29(31)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28612952

RESUMO

To meet the increasing demands for ultrasensitivity in monitoring trace amounts of low-abundance early biomarkers or environmental toxins, the development of a robust sensing system is urgently needed. Here, a novel signal cascade strategy is reported via an ultrasensitive polymeric sensing system (UPSS) composed of gold nanoparticle (gNP)-decorated polymer, which enables gNP aggregation in polymeric network and electrical conductance change upon specific aptamer-based biomolecular recognition. Ultralow concentrations of thrombin (10-18 m) as well as a low molecular weight anatoxin (165 Da, 10-14 m) are detected selectively and reproducibly. The biomolecular recognition induced polymeric network shrinkage responses as well as dose-dependent responses of the UPSS are validated using in situ real-time atomic-force microscopy, representing the first instance of real-time detection of biomolecular binding-induced polymer shrinkage in soft matter. Furthermore, in situ real-time confocal laser scanning microscopy imaging reveals the dynamic process of gNP aggregation responses upon biomolecular binding.


Assuntos
Nanopartículas Metálicas , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ouro , Polímeros , Trombina
8.
Mater Sci Eng C Mater Biol Appl ; 61: 269-77, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838850

RESUMO

The co-delivery of drug and gene has become the primary strategy in cancer therapy. However, to construct one safe co-delivering system with higher drug loading and gene transfection efficiency for cancer therapy is still challenging. Herein, a novel degradable nanocarriers were synthesized and characterized in this study, which was composed of polyethylenimine (PEI)-linked PEO-PPO-PEO (Pluronic F127), called F127-PEI. Then the nanocarrier was used for hydrophobic docetaxel (DOC) and functional gene (TFPI-2 plasmid) co-delivery to treat nasopharyngeal cancer (NPC). The results indicated that F127-PEI nanocarriers had higher DOC loading amount and possessed good gene delivery effect in vitro. For co-delivery analysis, the obtained F127-PEI/DOC/TFPI-2 complexes could induce a more significant apoptosis than DOC or TFPI-2 alone, and decreased invasive capacity of NPC HNE-1 cells more obviously. Moreover, the F127-PEI copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k by the hemolysis and MTT assays, which suggests a promising potential for NPC therapy.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Glicoproteínas , Neoplasias Nasofaríngeas , Plasmídeos , Poloxâmero , Polietilenoglicóis , Propilenoglicóis , Linhagem Celular Tumoral , Glicoproteínas/biossíntese , Glicoproteínas/genética , Humanos , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/terapia , Plasmídeos/química , Plasmídeos/farmacologia , Poloxâmero/química , Poloxâmero/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Propilenoglicóis/química , Propilenoglicóis/farmacologia
9.
ACS Nano ; 10(7): 6464-73, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27244244

RESUMO

Fungal keratitis, a severe ocular disease, is one of the leading causes of ocular morbidity and blindness, yet it is often neglected, especially in developing countries. Therapeutic efficacy of traditional treatment such as eye drops is very limited due to poor bioavailability, whereas intraocular injection might cause serious side effects. Herein, we designed and fabricated a hybrid hydrogel-based contact lens which comprises quaternized chitosan (HTCC), silver nanoparticles, and graphene oxide (GO) with a combination of antibacterial and antifungal functions. The hydrogel is cross-linked through electrostatic interactions between GO and HTCC, resulting in strong mechanical properties. Voriconazole (Vor), an antifungal drug, can be loaded onto GO which retains the drug and promotes its sustained release from the hydrogel-based contact lenses. The contact lenses also exhibited good antimicrobial functions in view of glycidyltrimethylammonium chloride and silver nanoparticles. The results from in vitro and in vivo experiments demonstrate that contact lenses loaded with Vor have excellent efficacy in antifungal activity in vitro and could significantly enhance the therapeutic effects on a fungus-infected mouse model. The results indicate that this hydrogel contact lenses-based drug delivery system might be a promising therapeutic approach for a rapid and effective treatment of fungal keratitis.


Assuntos
Lentes de Contato , Hidrogéis , Ceratite/terapia , Nanopartículas Metálicas , Nanomedicina Teranóstica , Animais , Hidrogel de Polietilenoglicol-Dimetacrilato , Camundongos , Prata
10.
Carbohydr Polym ; 92(2): 1367-76, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399166

RESUMO

Phosphate rock (PHR), a traditional fertilizer, is abundant, but is hard to be utilized by plants. To improve the utilization of PHR, and to integrate water-retaining and controlled-release fertilizers, an agricultural superabsorbent polymer based on sulfonated corn starch/poly (acrylic acid) embedding phosphate rock (SCS/PAA/PHR) was prepared. PHR can be suspended and well-dispersed in SCS/PAA by sulfonated corn starch (SCS). PHR and KOH were mixed in acrylic acid solution to provide phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent were investigated. The maximum swelling capacity in distilled water or 0.9 wt.% (weight percent) NaCl solution reached 498 g g(-1) and 65 g g(-1) (water/prepared dry superabsorbent) respectively. Moreover, release behaviours of P and K in SCS/PAA/PHR were also investigated. The results showed that SCS/PAA/PHR possessed excellent sustained-release property of plant nutrient, and the SCS/PAA could improve the P release greatly. Besides, the XPS analysis was employed to study the relationship between PHR and superabsorbent polymer.


Assuntos
Fertilizantes , Minerais/química , Fosfatos/química , Amido/química , Água/química , Absorção , Resinas Acrílicas/química , Preparações de Ação Retardada , Fósforo/química , Potássio/química , Solubilidade , Ácidos Sulfônicos/química , Zea mays/química
11.
Carbohydr Polym ; 90(2): 820-6, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22840007

RESUMO

To improve the water-fertilizer utilization ratio and mitigate the environmental contamination, an eco-friendly superabsorbent polymer (SPA), modified sugarcane bagasse/poly (acrylic acid) embedding phosphate rock (MSB/PAA/PHR), was prepared. Ammonia, phosphate rock (PHR) and KOH were admixed in the presence of acrylic acid to provide nitrogen (N), phosphorus (P) and potassium (K) nutrients, respectively. Impacts on water absorption capacity of the superabsorbent polymer (SAP) were investigated. The maximum swelling capacity in distilled water and 0.9 wt.% (weight percent) NaCl solution reached 414 gg(-1) and 55 gg(-1) (water/prepared SAP), respectively. The available NPK contents of the combination system were 15.13 mgg(-1), 6.93 mgg(-1) and 52.05 mgg(-1), respectively. Moreover, the release behaviors of NPK in the MSB/PAA/PHR were also studied. The results showed that the MSB/PAA/PHR has outstanding sustained-release plant nutrients property.


Assuntos
Celulose/química , Fertilizantes , Fósforo/química , Polímeros/farmacocinética , Saccharum/química , Água/química , Absorção , Celulose/farmacocinética , Celulose/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Modelos Biológicos , Fósforo/farmacocinética , Fósforo/farmacologia , Polímeros/síntese química , Polímeros/química , Água/metabolismo , Molhabilidade
12.
Int J Biol Macromol ; 50(3): 707-12, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22230613

RESUMO

Tetraethylenepentamine (TEPA) modified sugarcane bagasse (SB), a novel biosorbent (TEPA-MSB), was proved to be an effective adsorbent for anionic dyes due to the introduced functional amino groups. FTIR, TG and DSC analysis were employed to characterize the sorbent. The effects of pH, temperature, contact time and initial concentration of dye on the adsorption of eosin Y were investigated. The experimental data fit very well to the Langmuir model, giving a maximum sorption capacity of 399.04 mg/g at 25 °C. And the kinetic data were well described by the pseudo-second-order kinetic model. pH 6 was the optimal pH for eosin Y adsorption, and the maximum adsorption capacity of TEPA-MSB calculated by Langmuir model was 18 times higher than that of SB.


Assuntos
Celulose/química , Corantes/química , Corantes/isolamento & purificação , Amarelo de Eosina-(YS)/química , Amarelo de Eosina-(YS)/isolamento & purificação , Etilenodiaminas/química , Saccharum/química , Adsorção , Concentração de Íons de Hidrogênio , Fatores de Tempo , Água/química
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 28(9): 1568-72, 2008 Aug.
Artigo em Zh | MEDLINE | ID: mdl-18819869

RESUMO

OBJECTIVE: To develop a chitosan (CH)/polyethylene glycols succinate acid (PEG-SA)-mediated mitomycin C (MMC) delivery system and investigate its drug release characteristics in vitro and its effect against scar tissue adhesion in vivo. METHODS: Mitomycin C loading in the composite CH/PEG-SA/MMC films was determined using ultraviolet. The freeze-dried films were dispersed in 1 ml PBS (pH7.4) and mitomycin C release in vitro was determined according to the mitomycin C concentration-UV value standard curve. The influence of the film structure on the drug release was evaluated. The drug delivery system was then implanted in SD rats, and 4 weeks later, immunohistochemical and histological examinations were carried out to assess the therapeutic effect on epidural scar tissue. RESULTS: The linear regression equation of the mitomycin C concentration-UV value standard curve was y=0.593x(3)-2.563x(2)+25.944x-0.236 (R(2)=1.000). The film demonstrated good drug delivery capability, and 20 mg of the samples in PBS showed a peak mitomycin C release after 12 days of 14.9616 microg/ml, which was higher than the ID(50) of mitomycin C (10.4713 microg/l) to the fibroblasts. On days 18 and 32, another two drug release peaks occurred (14.4824 microg/ml and 11.4092 microg/ml, respectively), followed by maintenance of slow release. Till day 60, the accumulative mitomycin release reached 0.1793 microg/ml, and the loaded drug was ultimately completely released. Significant differences were noted in the hydroxyproline content in the scar tissues of different groups (F=12.085, P=0.000), and the CH/PEG-SA/MMC DDS reduced the amount of scar tissue and promoted its orderly alignment to control potential scar hyperplasia that may compress the spinal cord and nerve roots. CONCLUSION: The composite film for drug delivery possesses good flexibility and mechanical properties and allows sustained drug release of mitomycin C to prevent epidural scar tissue adhesion following lumbar laminectomy.


Assuntos
Sistemas de Liberação de Medicamentos , Disco Intervertebral/efeitos dos fármacos , Mitomicina/administração & dosagem , Aderências Teciduais/prevenção & controle , Animais , Quitosana/química , Disco Intervertebral/fisiopatologia , Disco Intervertebral/cirurgia , Mitomicina/química , Polietilenoglicóis/química , Polietilenos/química , Ratos , Ratos Sprague-Dawley , Succinatos/química
14.
Mol Pharm ; 3(2): 152-60, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16579644

RESUMO

Chitosan-based polymer micelles have a splendid outlook for drug delivery owing to the interesting properties, abundance, and low cost of chitosan. A new method of preparation of water-soluble N-palmitoyl chitosan (PLCS) which can form micelles in water is developed in this paper. The preparation of PLCS was carried out by swollen chitosan coupling with palmitic anhydride in dimethyl sulfoxide (DMSO). The degree of substitution (DS) of PLCS was in the range of 1.2-14.2%, and the critical aggregation concentration (CAC) of PLCS micelles was in the range of 2.0 x 10(-3) to 37.2 x 10(-3) mg/mL. The properties of PLCS micelles such as encapsulation capacity and controlled release ability of hydrophobic model drug ibuprofen (IBU) were evaluated. Experimental results indicated that the loading capacity (LC) of PLCS was approximately 10%. The drug release strongly depended on pH and temperature: low pH and high temperature accelerated drug release markedly. Moreover, the IR, 1H NMR, and TEM of PLCS, IBU-loaded PLCS, and a PLCS-IBU physical mixture have been measured to show that IBU is loaded by PLCS micelles.


Assuntos
Quitosana/análogos & derivados , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Micelas , Polímeros/química , Cápsulas , Quitosana/síntese química , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Permeabilidade , Espectrometria de Fluorescência , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA