Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445906

RESUMO

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Assuntos
Hidrolases de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudos Prospectivos , Biodegradação Ambiental , Poliésteres/metabolismo , Plásticos
2.
Environ Res ; 238(Pt 2): 117240, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783328

RESUMO

Bis (2-hydroxyethyl) terephthalate (BHET) is one of the main compounds produced by enzymatic hydrolysis or chemical depolymerization of polyethylene terephthalate (PET). However, the lack of understanding on BHET microbial metabolism is a main factor limiting the bio-upcycling of PET. In this study, BHET-degrading strains of Rhodococcus biphenylivorans GA1 and Burkholderia sp. EG1 were isolated and identified, which can grow with BHET as the sole carbon source. Furthermore, a novel esterase gene betH was cloned from strain GA1, which encodes a BHET hydrolyzing esterase with the highest activity at 30 °C and pH 7.0. In addition, the co-culture containing strain GA1 and strain EG1 could completely degrade high concentration of BHET, eliminating the inhibition on strain GA1 caused by the accumulation of intermediate metabolite ethylene glycol (EG). This work will provide potential strains and a feasible strategy for PET bio-upcycling.


Assuntos
Ácidos Ftálicos , Rhodococcus , Esterases , Ácidos Ftálicos/metabolismo , Hidrólise , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Rhodococcus/metabolismo
3.
Anal Chem ; 94(42): 14699-14706, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36245090

RESUMO

In situ and quantitative measurements of adenosine 5'-triphosphate (ATP) in single living cells are highly desired for understanding several sorts of necessary physiological and pathological processes. Due to its small size and high sensitivity, an ultra-microelectrode can be used for single-cell analysis. However, ATP is difficult to detect in single cells because it is nonelectroactive and low in content. Herein, we introduced an electrochemical nano-biosensor based on an amphiphilic aptamer-assisted carbon fiber nanoelectrode (aptCFNE) with high signal-to-noise ratio. The low current (e.g., 60 pA) and the tiny diameter of the tip (ca. 400 nm) of the nanosensor made it noninvasive to living cells. The amphiphilic aptamer has good biocompatibility and can be stably modified to the surface of functionalized electrodes. CFNE, which was modified with ferrocene-labeled aptamer, could quickly and selectively detect ATP content in the nucleus, cytoplasm, and extracellular space of single HeLa cells. The results showed that the ATP contents in the nucleus, cytoplasm, and extracellular space were 568 ± 9, 461 ± 20, and 312 ± 4 µM, respectively. The anticancer drug treatment effects on the cellular level were further recorded, which was of great significance for understanding ATP-related biological processes and drug screenings. This strategy is universally applicable to detect other targets by changing the aptamer sequence, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Aptâmeros de Nucleotídeos/química , Metalocenos , Fibra de Carbono , Células HeLa , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina/análise , Adenosina
4.
Arch Gynecol Obstet ; 306(3): 723-734, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34820720

RESUMO

BACKGROUND: The study aimed to investigate the potential risk factors for the placenta accreta spectrum (PAS), determine the predictive value of a diagnostic model, and evaluate the effects of octamethylcyclotetrasiloxane (OMCTS) on trophoblast proliferation and migration. METHODS: This case-control study included 244 pregnant women with PAS and 327 normal pregnant women who visited Guangzhou Women and Children's Medical Centre, China, from January 2014 to December 2017. Blood was collected from 42 women with PAS and 77 controls, and plasma specimens were analyzed by gas chromatography-time-of-flight mass spectrometry. In addition, the proliferation and migration of trophoblast cells were examined after treatment with OMCTS. RESULTS: We found an association between the risk of PAS and clinical factors related to fasting blood glucose levels (BS0, OR = 5.78), as well as factors related to endometrial injury [history of cesarean section (OR = 179.59), uterine scarring (OR = 68.37), and history of abortion (OR = 5.66)]. Equally important, pregnant women with PAS had significantly higher plasma OMCTS concentrations than controls. In vitro, we found that OMCTS could promote the proliferation and migration of HTR8/SVneo cells. The model of combining clinical factors and OMCTS had a good performance in PAS prediction (AUC = 0.97, 95% CI 0.78-0.93). CONCLUSIONS: The early diagnosis of PAS in pregnant women requires assessing risk factors, metabolic status, and BS0 levels before 20 weeks of gestation. OMCTS may be related to the development of PAS by promoting trophoblast cell proliferation and migration.


Assuntos
Placenta Acreta , Placenta Prévia , Estudos de Casos e Controles , Cesárea , Criança , Feminino , Humanos , Placenta , Placenta Acreta/terapia , Gravidez , Estudos Retrospectivos , Fatores de Risco , Siloxanas
5.
World J Microbiol Biotechnol ; 38(12): 249, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306036

RESUMO

Xylitol (C5H12O5), an amorphous sugar alcohol of crystalline texture has received great interest on the global market due to its numerous applications in different industries. In addition to its high anticariogenic and sweetening properties, characteristics such as high solubility, stability and low glycemic index confer xylitol its fame in the food and odontological industries. Moreover, it also serves as a building-block in the production of polymers. As a result of the harmful effects of the chemical production of xylitol, the biotechnological means of producing this polyol have evolved over the decades. In contrast to the high consumption of energy, long periods of purification, specialized equipment and high production cost encountered during its chemical synthesis, the biotechnological production of xylitol offers advantages both to the economy and the environment. Non-Saccharomyces yeast strains, also termed as nonconventional, possess the inherent capacity to utilize D-xylose as a sole carbon source, unlike Saccharomyces species.


Assuntos
Xilitol , Xilose , Biotecnologia , Saccharomyces cerevisiae , Álcoois Açúcares , Fermentação
6.
Appl Microbiol Biotechnol ; 105(14-15): 5739-5749, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34283269

RESUMO

Recently, thermophilic Thermoanaerobacterium species have attracted increasing attentions in consolidated bioprocessing (CBP), which can directly utilize lignocellulosic materials for biofuels production. Compared to the mesophilic process, thermophilic process shows greater prospects in CBP due to its relatively highly efficiency of lignocellulose degradation. In addition, thermophilic conditions can avoid microbial contamination, reduce the cooling costs, and further facilitate the downstream product recovery. However, only few reviews specifically focused on the microbial applications of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Accordingly, this review will comprehensively summarize the recent advances of Thermoanaerobacterium species in lignocellulosic biorefinery, including their secreted xylanases and bioenergy production. Furthermore, the co-culture can significantly reduce the metabolic burden and achieve the more complex work, which will be discussed as the further perspectives. KEY POINTS: • Thermoanaerobacterium species, promising chassis for lignocellulosic biorefinery. • Potential capability of hemicellulose degradation for Thermoanaerobacterium species. • Efficient bioenergy production by Thermoanaerobacterium species through metabolic engineering.


Assuntos
Thermoanaerobacterium , Biocombustíveis , Lignina , Engenharia Metabólica , Thermoanaerobacterium/genética
7.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500844

RESUMO

Lignocellulose is a kind of renewable bioresource containing abundant polysaccharides, which can be used for biochemicals and biofuels production. However, the complex structure hinders the final efficiency of lignocellulosic biorefinery. This review comprehensively summarizes the hydrolases and typical microorganisms for lignocellulosic degradation. Moreover, the commonly used bioprocesses for lignocellulosic biorefinery are also discussed, including separated hydrolysis and fermentation, simultaneous saccharification and fermentation and consolidated bioprocessing. Among these methods, construction of microbial co-culturing systems via consolidated bioprocessing is regarded as a potential strategy to efficiently produce biochemicals and biofuels, providing theoretical direction for constructing efficient and stable biorefinery process system in the future.


Assuntos
Biotecnologia/métodos , Lignina/química , Polissacarídeos/química , Animais , Biocombustíveis , Biomassa , Técnicas de Cocultura , Fermentação , Humanos , Hidrólise , Lignina/metabolismo , Polissacarídeos/metabolismo
8.
World J Microbiol Biotechnol ; 37(1): 16, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394223

RESUMO

Succinic acid is a valuable bulk chemical, which has been extensively applied in food, medicine, surfactants and biodegradable plastics industries. As a substitute for chemical raw material, bio-based succinic acid production has received increasing attention due to the depletion of fossil fuels and environmental issues. Meanwhile, the effective bioconversion of lignocellulosic biomass has always been a hot spot of interest owning to the advantages of low expense, abundance and renewability. Consolidated bioprocessing (CBP) is considered to be an alternative approach with outstanding potential, as CBP can not only improve the product yield and productivity, but also reduce the equipment and operating costs. In addition, the current emerging microbial co-cultivation systems provide strong competitiveness for lignocellulose utilization through CBP. This article comprehensively discusses different strategies for the bioconversion of lignocellulose to succinic acid. Based on the principles and technical concepts of CBP, this review focuses on the progress of succinic acid production under different CBP strategies (metabolic engineering based and microbial co-cultivation based). Moreover, the main challenges faced by CBP-based succinic acid fermentation are analyzed, and the future direction of CBP production is prospected.


Assuntos
Lignina/metabolismo , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Biomassa , Técnicas de Cocultura , Fermentação
9.
Amino Acids ; 52(5): 771-780, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372390

RESUMO

Gamma-aminobutyric acid (GABA) biosynthesis depended to a great extent on the biotransformation characterization of glutamate decarboxylase (GAD) and process conditions. In this paper, the enhancing effect of D101 macroporous adsorption resin (MAR) on the GABA production was investigated based on the whole-cell biotransformation characterization of Enterococcus faecium and adsorption characteristics of D101 MAR. The results indicated that the optimal pH for reaction activity of whole-cell GAD and pure GAD was 4.4 and 5.0, respectively, and the pH range retained at least 50% of GAD activity was from 4.8 to 5.6 and 4.0-4.8, respectively. No substrate inhibition effect was observed on both pure GAD and whole-cell GAD, and the maximum activity could be obtained when the initial L-glutamic acid (L-Glu) concentration exceeded 57.6 mmol/L and 96.0 mmol/L, respectively. Besides, GABA could significantly inhibit the activity of whole-cell GAD rather than pure GAD. When the initial GABA concentration of the reaction solution remained 100 mmol/L, 33.51 ± 9.11% of the whole-cell GAD activity was inhibited. D101 MAR exhibited excellent properties in stabilizing the pH of the conversion reaction system, supplementing free L-Glu and removing excess GABA. Comparison of the biotransformation only in acetate buffer, the GABA production, with 50 g/100 mL of D101 MAR, was significantly increased by 138.71 ± 5.73%. D101 MAR with pre-adsorbed L-Glu could significantly enhance the production of GABA by gradual replenishment of free L-Glu, removing GABA and maintaining the pH of the reaction system, which would eventually make the GABA production more economical and eco-friendly.


Assuntos
Biotransformação , Enterococcus faecium/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Resinas Sintéticas/química , Ácido gama-Aminobutírico/metabolismo , Adsorção , Enterococcus faecium/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Porosidade , Resinas Sintéticas/metabolismo
10.
Biotechnol Bioeng ; 117(10): 2985-2995, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32946127

RESUMO

Consolidated bioprocessing (CBP) by using microbial consortium was considered as a promising approach to achieve direct biofuel production from lignocellulose. In this study, the interaction mechanism of microbial consortium consisting of Thermoanaerobacterium thermosaccharolyticum M5 and Clostridium acetobutylicum NJ4 was analyzed, which could achieve efficient butanol production from xylan through CBP. Strain M5 possesses efficient xylan degradation capability, as 19.73 g/L of xylose was accumulated within 50 hr. The efficient xylose utilization capability of partner strain NJ4 could relieve the substrate inhibition to hydrolytic enzymes of xylanase and xylosidase secreted by strain M5. In addition, the earlier solventogenesis of strain NJ4 was observed due to the existence of butyrate generated by strain M5. The mutual interaction of these two strains finally gave 13.28 g/L of butanol from 70 g/L of xylan after process optimization, representing a relatively high butanol production from hemicellulose. Moreover, 7.61 g/L of butanol was generated from untreated corncob via CBP. This successfully constructed microbial consortium exhibits efficient cooperation performance on butanol production from lignocellulose, which could provide a platform for the emerging butanol production from lignocellulose.


Assuntos
Biomassa , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Lignina/metabolismo , Thermoanaerobacterium/metabolismo , Bioengenharia , Biotecnologia , Consórcios Microbianos , Xilanos/metabolismo
11.
Appl Microbiol Biotechnol ; 102(13): 5419-5425, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736820

RESUMO

Biobutanol can be indigenously synthesized by solventogenic Clostridium species; however, these microorganisms possess inferior capability of utilizing abundant and renewable organic wastes, such as starch, lignocellulose, and even syngas. The common strategy to achieve direct butanol production from these organic wastes is through genetic modification of wild-type strains. However, due to the complex of butanol synthetic and hydrolytic enzymes expression systems, the recombinants show unsatisfactory results. Recently, setting up microbial co-culturing systems became more attractive, as they could not only perform more complicated tasks, but also endure changeable environments. Hence, this mini-review comprehensively summarized the state-of-the-art biobutanol production from different substrates by using microbial co-culturing systems. Furthermore, strategies regarding establishment principles of microbial co-culturing systems were also analyzed and compared.


Assuntos
Butanóis/metabolismo , Técnicas de Cocultura , Fermentação , Resíduos Industriais , Lignina/metabolismo , Amido/metabolismo , 1-Butanol/metabolismo , Hidrólise
12.
Caries Res ; 52(1-2): 88-101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29258070

RESUMO

Arginine metabolism via the arginine deiminase system (ADS) of oral bacteria generates ammonia, which can increase the pH of oral biofilms and decrease the risk for dental caries. Antagonistic interactions between ADS-positive and cariogenic bacteria in oral biofilms may be an important ecological determinant of caries. This study investigated the antagonistic potential and mechanisms of clinical isolates of arginolytic streptococci on and by Streptococcus mutans UA159, a well-characterized cariogenic human isolate. Low-passage isolates of Streptococcus gordonii, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus australis, and Streptococcus cristatus inhibited the growth of S. mutans to various degrees when they were inoculated on growth media first or simultaneously with S. mutans. The antagonistic effects of arginolytic strains against S. mutans and the production of H2O2 by these strains were enhanced during growth in a less-rich medium or when galactose was substituted for glucose as the primary carbohydrate source. Pyruvate oxidase was the dominant pathway for H2O2 production by arginolytic strains, but lactate oxidase activity was also detected in some strains of S. gordonii and S. cristatus. UA159 inhibited the growth of all tested arginolytic strains when inoculated first, especially in aerobic conditions. However, the antagonistic effects of S. mutans on certain strains of S. gordonii and S. australis were not observed during anaerobic growth in the presence of arginine. Thus, arginolytic commensal streptococci may have a synergistically positive impact on the ecology of oral biofilms by moderating biofilm pH while antagonizing the growth and virulence of caries pathogens.


Assuntos
Streptococcus mutans/crescimento & desenvolvimento , Streptococcus/crescimento & desenvolvimento , Simbiose , Arginina/metabolismo , Biofilmes/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Streptococcus/metabolismo , Streptococcus mutans/metabolismo , Streptococcus sanguis/crescimento & desenvolvimento
13.
Appl Environ Microbiol ; 80(11): 3305-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657870

RESUMO

Traditional three-domain fungal and bacterial laccases have been extensively studied for their significance in various biotechnological applications. Growing molecular evidence points to a wide occurrence of more recently recognized two-domain laccase-like multicopper oxidase (LMCO) genes in Streptomyces spp. However, the current knowledge about their ecological role and distribution in natural or artificial ecosystems is insufficient. The aim of this study was to investigate the diversity and composition of Streptomyces two-domain LMCO genes in agricultural waste composting, which will contribute to the understanding of the ecological function of Streptomyces two-domain LMCOs with potential extracellular activity and ligninolytic capacity. A new specific PCR primer pair was designed to target the two conserved copper binding regions of Streptomyces two-domain LMCO genes. The obtained sequences mainly clustered with Streptomyces coelicolor, Streptomyces violaceusniger, and Streptomyces griseus. Gene libraries retrieved from six composting samples revealed high diversity and a rapid succession of Streptomyces two-domain LMCO genes during composting. The obtained sequence types cluster in 8 distinct clades, most of which are homologous with Streptomyces two-domain LMCO genes, but the sequences of clades III and VIII do not match with any reference sequence of known streptomycetes. Both lignocellulose degradation rates and phenol oxidase activity at pH 8.0 in the composting process were found to be positively associated with the abundance of Streptomyces two-domain LMCO genes. These observations provide important clues that Streptomyces two-domain LMCOs are potentially involved in bacterial extracellular phenol oxidase activities and lignocellulose breakdown during agricultural waste composting.


Assuntos
Variação Genética , Lignina/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Agricultura , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência , Solo , Microbiologia do Solo , Streptomyces/crescimento & desenvolvimento , Gerenciamento de Resíduos
14.
Bioprocess Biosyst Eng ; 37(11): 2289-304, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24828491

RESUMO

Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.9-48.8% in air-water system when the U G was from 0.004 to 0.04 m/s, and by 65.1-512.6% in air-CMC solution system. The V d value for the membrane-tube sparger was improved by 40.0-86.3%. The value of K L a was increased by 52.8-84.4% in air-water system, and by 63.3-836.3% in air-CMC solution system. Empirical correlations of ε T, V d, and K L a were proposed, and well corresponding with the experimental data with the deviation of 10%.


Assuntos
Reatores Biológicos , Ar , Carboximetilcelulose Sódica , Desenho de Equipamento , Gases , Hidrodinâmica , Membranas Artificiais , Microscopia Eletrônica de Varredura , Oxigênio , Pressão
15.
Food Chem Toxicol ; 185: 114474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301992

RESUMO

Biodegradable plastics, were considered environmentally friendly, may produce more microplastic particles (MPs) within the same period and exert more pronounced adverse effects on human health than traditional non-biodegradable plastics. Thus, this study investigated the changes of two kinds of biodegradable MPs from different sources in the digestive tract by using simulated digestion and fermentation models in vitro, with particle size, scanning electron microscopy (SEM) and gel permeation chromatography (GPC) analysis, and their implications on the gut microbiota were detected by full-length bacterial 16S rRNA gene amplicon sequencing. Poly(ε-caprolactone) (PCL) MPs exhibited stability in the upper gastrointestinal tract, while poly(lactic acid) (PLA) MPs were degraded beginning in the small intestine digestion phase. Both PCL and PLA MPs were degraded and oligomerized during colonic fermentation. Furthermore, this study highlighted the disturbance of the gut microbiota induced by MPs and their oligomers. PCL and PLA MPs significantly changed the composition and reduced the α-diversity of the gut microbiota. PCL and PLA MPs exhibited the same inhibitory effects on key probiotics such as Bifidobacterium, Lactobacillus, Faecalibacterium, Limosilactobacillus, Blautia, Romboutsia, and Ruminococcus, which highlighted the potential hazards of these materials for human health. In conclusion, this study illuminated the potential biodegradation of MPs through gastrointestinal digestion and the complex interplay between MPs and the gut microbiota. The degradable characteristic of biodegradable plastics may cause more MPs and greater harm to human health.


Assuntos
Plásticos Biodegradáveis , Microbioma Gastrointestinal , Humanos , Microplásticos , RNA Ribossômico 16S , Poliésteres , Digestão
16.
Mol Oral Microbiol ; 39(2): 29-39, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37718958

RESUMO

The prevalence of periodontitis increases with physiological aging. However, whether bacteria associated with periodontal diseases foster aging and the mechanisms by which they may do so are unknown. Herein, we hypothesize that Fusobacterium nucleatum, a microorganism associated with periodontitis and several other age-related disorders, triggers senescence, a chief hallmark of aging responsible to reduce tissue repair capacity. Our study analyzed the senescence response of gingival epithelial cells and their reparative capacity upon long-term exposure to F. nucleatum. Specifically, we assessed (a) cell cycle arrest by analyzing the cyclin-dependent kinase inhibitors p16INK4a and p14ARF and their downstream cascade (pRb, p53, and p21) at both gene and protein levels, (b) lysosomal mediated dysfunction by using assays targeting the expression and activity of the senescence-associated ß-galactosidase (SA-ß-Gal) enzyme, and (c) nuclear envelope breakdown by assessing the expression of Lamin-B1. The consequences of the senescence phenotype mediated by F. nucleatum were further assessed using wound healing assays. Our results revealed that prolonged exposure to F. nucleatum promotes an aging-like phenotype as evidenced by the increased expression of pro-senescence markers (p16INK4a , p21, and pRb) and SA-ß-Gal activity and reduced expression of the counter-balancing cascade (p14ARF and p53) and Lamin-B1. Furthermore, we also noted impaired wound healing capacity of gingival epithelial cells upon prolong bacterial exposure, which was consistent with the senescence-induced phenotype. Together, our findings provide a proof-of-concept evidence that F. nucleatum triggers a pro-senescence response in gingival epithelial cells. This might affect periodontal tissue homeostasis by reducing its repair capacity and, consequently, increasing susceptibility to periodontitis during aging.


Assuntos
Fusobacterium nucleatum , Periodontite , Humanos , Fusobacterium nucleatum/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células Epiteliais/metabolismo , Fenótipo , Laminas/metabolismo
17.
Biotechnol J ; 19(4): e2300723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622797

RESUMO

Polyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU. GatA250 degraded self-synthesized thermoplastic PU film and postconsumption foam with degradation efficiency of 8.17% and 4.29%, respectively. During the degradation, the film released 14.8 µm 4,4'-methylenedianiline (MDA), but 1,4-butanediol (BDO) and adipic acid (AA) were not released. Our findings indicated that GatA250 only cleaved urethane bonds in PU, and the degradation efficiency was extremely low. Hence, we introduced the cutinase LCC, which possesses hydrolytic activity on the ester bonds in PU, and then used both enzymes simultaneously to degrade the polyester-PU. The combined system (LCC-GatA250) had higher degradation efficiency for the degradation of PU film (42.2%) and foam (13.94%). The combined system also showed a 1.80 time increase in the production of the monomer MDA, and a 1.23 and 3.62 times increase in the production of AA and BDO, respectively, compared to their production recorded after treatment with only GatA250 or LCC. This study provides valuable insights into PU pollution control and also proposes applicable solutions to manage PU wastes through bio-recycling.


Assuntos
Compostos de Anilina , Hidrolases de Éster Carboxílico , Poliésteres , Poliuretanos , Poliésteres/química , Amidoidrolases
18.
J Control Release ; 369: 556-572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580136

RESUMO

Vaccines represent one of the most powerful and cost-effective innovations for controlling a wide range of infectious diseases caused by various viruses and bacteria. Unlike mRNA and DNA-based vaccines, subunit vaccines carry no risk of insertional mutagenesis and can be lyophilized for convenient transportation and long-term storage. However, existing adjuvants are often associated with toxic effect and reactogenicity, necessitating expanding the repertoire of adjuvants with better biocompatibility, for instance, designing self-adjuvating polymeric carriers. We herein report a novel subunit vaccine delivery platform constructed via in situ free radical polymerization of C7A (2-(Hexamethyleneimino) ethyl methacrylate) and acrylamide around the surface of individual protein antigens. Using ovalbumin (OVA) as a model antigen, we observed substantial increases in both diameter (∼70 nm) and surface potential (-1.18 mV) following encapsulation, referred to as n(OVA)C7A. C7A's ultra pH sensitivity with a transition pH around 6.9 allows for rapid protonation in acidic environments. This property facilitates crucial processes such as endosomal escape and major histocompatibility complex (MHC)-I-mediated antigen presentation, culminating in the substantial CD8+ T cell activation. Additionally, compared to OVA nanocapsules without the C7A components and native OVA without modifications, we observed heightened B cell activation within the germinal center, along with remarkable increases in serum antibody and cytokine production. It's important to note that mounting evidence suggests that adjuvant effects, particularly its targeted stimulation of type I interferons (IFNs), can contribute to advantageous adaptive immune responses. Beyond its exceptional potency, the nanovaccine also demonstrated robust formation of immune memory and exhibited a favorable biosafety profile. These findings collectively underscore the promising potential of our nanovaccine in the realm of immunotherapy and vaccine development.


Assuntos
Camundongos Endogâmicos C57BL , Ovalbumina , Linfócitos T Citotóxicos , Animais , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Metacrilatos/química , Polímeros/química , Polímeros/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Vacinas/administração & dosagem , Vacinas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Nanovacinas
19.
Trends Biotechnol ; 41(10): 1223-1226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37105776

RESUMO

Upcycling processes via tandem chemical deconstruction and biological transformation has shown promise for poly(ethylene terephthalate) (PET) waste open-loop management. Under this framework, postconsumer PET becomes a low-cost and abundant starting material for the synthesis of high-value chemicals.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Etilenos
20.
Trends Microbiol ; 31(7): 668-671, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121829

RESUMO

Enzyme-based plastic degradation and valorization of the plastic-derived monomers has emerged as a potent option to address the plastic waste dilemma. Obstacles in implementing the enzymatic degradation of plastics in industry are here summarized, and strategies to overcome these obstacles are discussed to exploit the full potential of enzymatic plastic degradation toward a sustainable plastic economy.


Assuntos
Plásticos , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA