Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 145(18): 1412-1426, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35089805

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) have tremendous promise for application in cardiac regeneration, but their translational potential is limited by an immature phenotype. We hypothesized that large-scale manufacturing of mature hPSC-CMs could be achieved through culture on polydimethylsiloxane (PDMS)-lined roller bottles and that the transplantation of these cells would mediate better structural and functional outcomes than with conventional immature hPSC-CM populations. METHODS: We comprehensively phenotyped hPSC-CMs after in vitro maturation for 20 and 40 days on either PDMS or standard tissue culture plastic substrates. All hPSC-CMs were generated from a transgenic hPSC line that stably expressed a voltage-sensitive fluorescent reporter to facilitate in vitro and in vivo electrophysiological studies, and cardiomyocyte populations were also analyzed in vitro by immunocytochemistry, ultrastructure and fluorescent calcium imaging, and bulk and single-cell transcriptomics. We next compared outcomes after the transplantation of these populations into a guinea pig model of myocardial infarction using end points including histology, optical mapping of graft- and host-derived action potentials, echocardiography, and telemetric electrocardiographic monitoring. RESULTS: We demonstrated the economic generation of >1×108 mature hPSC-CMs per PDMS-lined roller bottle. Compared with their counterparts generated on tissue culture plastic substrates, PDMS-matured hPSC-CMs exhibited increased cardiac gene expression and more mature structural and functional properties in vitro. More important, intracardiac grafts formed with PDMS-matured myocytes showed greatly enhanced structure and alignment, better host-graft electromechanical integration, less proarrhythmic behavior, and greater beneficial effects on contractile function. CONCLUSIONS: We describe practical methods for the scaled generation of mature hPSC-CMs and provide the first evidence that the transplantation of more mature cardiomyocytes yields better outcomes in vivo.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Linhagem Celular , Cobaias , Humanos , Miócitos Cardíacos/metabolismo , Plásticos/metabolismo , Células-Tronco Pluripotentes/metabolismo
2.
Cell Reprogram ; 25(2): 53-64, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37053510

RESUMO

Exosomes are one kind of small-cell extracellular membranous vesicles that can regulate intercellular communication and give rise to mediating the biological behaviors of cells, involving in tissue formation, repair, the modulation of inflammation, and nerve regeneration. The abundant kinds of cells can secret exosomes, among them, mesenchymal stem cells (MSCs) are very perfect cells for mass production of exosomes. Dental tissue-derived mesenchymal stem cells (DT-MSCs), including dental pulp stem cells, stem cells from exfoliated deciduous teeth, stem cells from apical papilla, stem cells from human periodontal ligament (PDLSCs), gingiva-derived mesenchymal stem cells, dental follicle stem cells, tooth germ stem cells, and alveolar bone-derived mesenchymal stem cells, are now known as a potent tool in the area of cell regeneration and therapy, more importantly, DT-MSCs can also release numerous types of exosomes, participating in the biological functions of cells. Hence, we briefly depict the characteristics of exosomes, give a detailed description of the biological functions and clinical application in some respects of exosomes from DT-MSCs through systematically reviewing the latest evidence, and provide a rationale for their use as tools for potential application in tissue engineering.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Ligamento Periodontal , Gengiva , Células-Tronco , Diferenciação Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA