Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 321, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836267

RESUMO

Enterococcus faecalis (E. faecalis) biofilm-associated persistent endodontic infections (PEIs) are one of the most common tooth lesions, causing chronic periapical periodontitis, root resorption, and even tooth loss. Clinical root canal disinfectants have the risk of damaging soft tissues (e.g., mucosa and tongue) and teeth in the oral cavity, unsatisfactory to the therapy of PEIs. Nanomaterials with remarkable antibacterial properties and good biocompatibility have been developed as a promising strategy for removing pathogenic bacteria and related biofilm. Herein, carbon dots (CDs) derived from fucoidan (FD) are prepared through a one-pot hydrothermal method for the treatment of PEIs. The prepared FDCDs (7.15 nm) with sulfate groups and fluorescence property are well dispersed and stable in water. Further, it is found that in vitro FDCDs display excellent inhibiting effects on E. faecalis and its biofilm by inducing the formation of intracellular and extracellular reactive oxygen species and altering bacterial permeability. Importantly, the FDCDs penetrated the root canals and dentinal tubules, removing located E. faecalis biofilm. Moreover, the cellular assays show that the developed FDCDs have satisfactory cytocompatibility and promote macrophage recruitment. Thus, the developed FDCDs hold great potential for the management of PEIs.


Assuntos
Enterococcus faecalis , Irrigantes do Canal Radicular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Carbono , Polissacarídeos , Irrigantes do Canal Radicular/farmacologia , Irrigantes do Canal Radicular/uso terapêutico , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/uso terapêutico
2.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500516

RESUMO

Three homologous electrochromic conjugated polymers, each containing an asymmetric building block but decorated with distinct alkyl chains, were designed and synthesized using electrochemical polymerization in this study. The corresponding monomers, namely T610FBTT810, DT6FBT, and DT48FBT, comprise the same backbone structure, i.e., an asymmetric 5-fluorobenzo[c][1,2,5]thiadiazole unit substituted by two thiophene terminals, but were decorated with different types of alkyl chain (hexyl, 2-butyloctyl, 2-hexyldecyl, or 2-octyldecyl). The effects of the side-chain structure and asymmetric repeating unit on the optical absorption, electrochemistry, morphology, and electrochromic properties were investigated comparatively. It was found that the electrochromism conjugated polymer, originating from DT6FBT with the shortest and linear alkyl chain, exhibits the best electrochromic performance with a 25% optical contrast ratio and a 0.3 s response time. The flexible electrochromic device of PDT6FBT achieved reversible colors of navy and cyan between the neutral and oxidized states, consistent with the non-device phenomenon. These results demonstrate that subtle modification of the side chain is able to change the electrochromic properties of conjugated polymers.


Assuntos
Polímeros , Tiofenos , Polímeros/química , Polimerização , Tiofenos/química , Eletroquímica/métodos
3.
Anal Chem ; 93(40): 13475-13484, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586792

RESUMO

The development of a robust sensing platform with an efficient probe assembly, and ingenious signal conversion is of great significance for bioanalytical application. In this work, a multipedal polydopamine nanoparticles-DNA (PDANs-DNA) nanomachine coupling electrochemical-driven metal-organic frameworks (MOFs) conversion-enabled biosensing platform was constructed. The PDANs-DNA nanomachine was designed based on Ca2+-mediated DNA adsorption and target-triggered catalytic hairpin assembly on PDANs, which not only maintained the DNA immobilization simplicity but also possessed a high walking efficiency. PDANs-DNA nanomachine could walk fast on the electrode via multiple legs under exonuclease III driving, resulting in the formation of DNA dendrimers through two hairpins assembly. The MOFs (Fe-MIL-88-NH2) probe was decorated on the DNA dendrimers to act as a porous metal precursor and converted into electroactive Prussian Blue by a controlled electrochemical approach, which was a facile, simple, and room-temperature approach compared with the commonly employed MOFs conversion methods. Using microRNA-21 (miRNA-21) as the model target, the proposed biosensor achieved miRNA-21 detection ranging from 10 aM to 10 pM with the detection limit of 5.8 aM. The proposed strategy presented a highly efficient walking platform with the ingenious electrochemical conversion of MOFs, providing more options for the design of an electrochemical platform and holding potential applications in clinical analysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , DNA , Técnicas Eletroquímicas , Indóis , Limite de Detecção , Polímeros
4.
Mol Genet Genomic Med ; 12(4): e2429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553934

RESUMO

BACKGROUND: Limited research has been conducted regarding the elucidation of genotype-phenotype correlations within the 20q13.33 region. The genotype-phenotype association of 20q13.33 microdeletion remains inadequately understood. In the present study, two novel cases of 20q13.33 microdeletion were introduced, with the objective of enhancing understanding of the genotype-phenotype relationship. METHODS: Two unrelated patients with various abnormal clinical phenotypes from Fujian province Southeast China were enrolled in the present study. Karyotype analysis and chromosomal microarray analysis (CMA) were performed to investigate chromosomal abnormalities and copy number variants. RESULTS: The results of high-resolution G-banding karyotype analysis elicited a 46,XY,der(20)add(20)(q13.3) in Patient 1. This patient exhibited various clinical manifestations, such as global developmental delay, intellectual disability, seizures, and other congenital diseases. Subsequently, a 1.0-Mb deletion was identified in the 20q13.33 region alongside a 5.2-Mb duplication in the 14q32.31q32.33 region. In Patient 2, CMA results revealed a 1.8-Mb deletion in the 20q13.33 region with a 4.8-Mb duplication of 17q25.3. The patient exhibited additional abnormal clinical features, including micropenis, congenital heart disease, and a distinctive crying pattern characterized by a crooked mouth. CONCLUSION: In the present study, for the first time, an investigation was conducted into two novel cases of 20q13.33 microdeletion with microduplications in the 17q25.3 and 14q32.31q32.33 regions in the Chinese population. The presence of micropenis may be attributed to the 20q13.33 microdeletion, potentially expanding the phenotypic spectrum associated with this deletion.


Assuntos
Estruturas Cromossômicas , Doenças dos Genitais Masculinos , Deficiência Intelectual , Pênis/anormalidades , Criança , Humanos , Deficiência Intelectual/genética , Cariotipagem , Cariótipo
5.
Front Cell Infect Microbiol ; 13: 1251309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780847

RESUMO

Background: Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review: Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review: In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.


Assuntos
Anti-Infecciosos , Carbono , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Boca , Biofilmes , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA