Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38400168

RESUMO

South Korea has experienced outbreaks of foot-and-mouth disease (FMD) of serotypes O and A, leading to nationwide vaccination with a bivalent vaccine. Since the FMD virus (FMDV) Asia1 group-V genotype occurred in North Korea in 2007, an Asia1/MOG/05 vaccine strain belonging to the Asia1 group-V genotype was developed using a genetic recombination method (Asia1/MOG/05-R). This study aimed to evaluate the antigen productivity and viral inactivation kinetics of Asia1/MOG/05-R to assess its commercial viability. The antigen yield of Asia1/MOG/05-R produced in flasks and bioreactors was approximately 4.0 µg/mL. Binary ethylenimine (BEI) inactivation kinetics of Asia1/MOG/05-R showed that 2 mM and 1.0 mM BEI treatment at 26 °C and 37 °C, respectively, resulted in a virus titer <10-7 TCID50/mL within 24 h, meeting the inactivation kinetics criteria. During incubation at 26 °C and 37 °C, 10% antigen loss occurred, but not due to BEI treatment. When pigs were inoculated twice with the Asia1/MOG/05-R antigen, the virus neutralization titer increased to approximately 1:1000; therefore, it can sufficiently protect against Asia1/MOG/05-R and Asia1 Shamir viruses. The Asia1/MOG/05-R will be useful as a vaccine strain for domestic antigen banks.

2.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675749

RESUMO

The thermal stability of the in-house-developed foot-and-mouth disease (FMD) type O and A viruses was evaluated, and the O Jincheon virus was found to exhibit the lowest thermal stability. To overcome this instability, we proposed a novel stabilizer, calcium chloride. The thermal stability of FMDVs increased up to a CaCl2 concentration of 10 mM, and it had a decreasing trend at >30 mM. The O Jincheon virus showed a significant decrease in the amount of antigen over time at 4 °C. In contrast, the samples treated with CaCl2 showed stable preservation of the virus without significant antigen loss. After the CaCl2-formulated vaccine was administered twice to pigs, the virus neutralization titer reached approximately 1:1000, suggesting that the vaccine could protect pigs against the FMDV challenge. In summary, the O Jincheon virus is difficult to utilize as a vaccine given its low stability during storage after antigen production. However, following its treatment with CaCl2, it can be easily utilized as a vaccine. This study evaluated CaCl2 as a novel stabilizer in FMD vaccines and may contribute to the development of stable vaccine formulations, especially for inherently unstable FMDV strains.

3.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543864

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral infection causing acute and severe vesicular lesions in cattle and pigs, which has prompted global vaccination policies. This study presents a technique for enhancing antigen yield in SAT1 BOT and SAT3 ZIM by treatment with calcium chloride (CaCl2). We tested changes in cell viability in BHK-21 suspension cells treated with varying concentrations of CaCl2. The optimal CaCl2 concentration was determined based on antigen yield. The timing of CaCl2 supplementation relative to FMD virus inoculation was tested. Finally, the optimal medium for antigen production was identified. We observed a concentration-dependent decrease in BHK-21 cell viability at >7.5 mM CaCl2. A CaCl2 concentration of 3 mM yielded the most antigens. CaCl2 supplementation relative to FMD virus infection was optimal 2 h before or with viral inoculation. CD-BHK 21 medium supplemented with CaCl2 was the most productive medium. Specifically, SAT1 BOT and SAT3 ZIM showed improved antigen production in CD-BHK 21 medium with 3 mM CaCl2, while Provero-1 and Cellvento BHK-200 media showed no significant enhancement. Overall, CaCl2 supplementation enhanced FMD antigen productivity. This study provides a useful framework for enhancing antigen production efficiently in the FMD vaccine industry.

4.
Viruses ; 16(3)2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38543822

RESUMO

Since the foot-and-mouth disease (FMD) outbreak in South Korea in 2010-2011, vaccination policies utilizing inactivated FMD vaccines composed of types O and A have been implemented nationwide. However, because type Asia1 occurred in North Korea in 2007 and intermittently in neighboring countries, the risk of type Asia1 introduction cannot be ruled out. This study evaluated the antigen yield and viral inactivation kinetics of the recombinant Asia1 Shamir vaccine strain (Asia1 Shamir-R). When Asia1 Shamir-R was proliferated in shaking flasks (1 L), a 2 L bioreactor (1 L), and a wave bioreactor (25 L), the antigen yields were 7.5 µg/mL, 5.2 µg/mL, and 3.8 µg/mL, respectively. The optimal FMDV inactivation conditions were 2 mM BEI at 26 °C and 1.0 mM BEI at 37 °C. There was no antigen loss due to BEI treatment, and only a decrease in antigen levels was observed during storage. The sera from pigs immunized with antigen derived from a bioreactor exhibited a neutralizing antibody titer of approximately 1/1000 against Asia1 Shamir and Asia1/MOG/05 viruses; therefore, Asia1 Shamir-R is expected to provide sufficient protection against both viruses. If an FMD vaccine production facility is established, this Asia1 Shamir-R can be employed for domestic antigen banks in South Korea.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Suínos , Inativação de Vírus , Proteínas do Capsídeo , Vacinas Sintéticas , Reatores Biológicos
5.
Pathogens ; 12(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37375450

RESUMO

Foot-and-mouth disease (FMD) vaccines must be produced in a biosafety level 3 facility, so the FMD virus (FMDV) must be completely inactivated after amplification. The inactivation kinetics of FMDV during vaccine antigen production were assessed by evaluating whether the viral titer dropped below 10-7 TCID50/mL within 24 h of binary ethyleneimine (BEI) treatment. This study dealt with four FMD vaccine candidate strains for the efficacy of BEI treatment at different concentrations and temperatures to determine the optimal inactivation condition of each virus. Two domestic isolates, O/SKR/Boeun/2017 (O BE) and A/SKR/Yeoncheon/2017 (A YC), and two recombinant viruses, PAK/44/2008 (O PA-2) and A22/Iraq/24/64 (A22 IRQ), were investigated. The O BE and A22 IRQ required 2 mM BEI at 26 °C and 0.5 mM BEI at 37 °C for complete inactivation. The O PA-2 and A YC required 2 mM BEI at 26 °C and 1 mM BEI at 37 °C. Crucially, the yield of FMD virus particles (146S) in the viral infection supernatant was higher (>4.0 µg/mL) than those previously reported; additionally, there was little antigen loss, even after 24 h of treatment with 3 mM BEI. Overall, it is considered economical to produce FMD vaccines using these four kinds of viruses; therefore, these candidate strains will be prioritized for the manufacture of FMD vaccines in South Korea.

6.
Vaccines (Basel) ; 11(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37514972

RESUMO

Foot-and-mouth disease (FMD) is a highly infectious disease affecting cloven-hoofed animals and causes significant economic losses to the livestock industry. The Type O PanAsia-2 (O PA-2) vaccine strain is protective against a wide range of serotype O FMD virus (FMDV) strains in East Asia, and A22 Iraq/24/64 (A22 IRQ) is the most widely used vaccine strain in FMD vaccine antigen banks. The aim of this study was to produce antigens from O PA-2 and A22 IRQ viruses using a 100 L bioreactor and evaluate the protective efficacy of varying antigen concentrations in pigs. More than 2 µg/mL of the antigen was recovered from the O PA-2 and A22 IRQ virus-infected supernatants. Further, inactivation of O PA-2 and A22 IRQ by binary ethyleneimine revealed that the viral titers decreased below 10-7 TCID50/mL within 13 h and 9 h, respectively. The O PA-2 and A22 IRQ vaccines, containing 10 µg and 5 µg of antigen, respectively, provided protection against homologous viruses in pigs. This is the first report demonstrating that the antigens obtained from the pilot-scale production of O PA-2 and A22 IRQ are viable candidate vaccines. These results will pave the way for industrial-scale FMD vaccine production in South Korea.

7.
Antibiotics (Basel) ; 11(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36009910

RESUMO

Cutibacterium acnes is a pathogen that can cause acne vulgaris, sarcoidosis, endodontic lesions, eye infections, prosthetic joint infections, and prostate cancer. Recently, bacteriophage (phage) therapy has been developed as an alternative to antibiotics. In this study, we attempted to isolate 15 phages specific to C. acnes from 64 clinical samples obtained from patients with acne vulgaris. Furthermore, we sequenced the genomes of these three phages. Bioinformatic analysis revealed that the capsid and tape measure proteins are strongly hydrophobic. To efficiently solubilize the phage particles, we measured the adsorption rate, one-step growth curve, and phage stability using an SMT2 buffer containing Tween 20. Here, we report the genotypic and phenotypic characteristics of the novel C. acnes-specific phages.

8.
Pathogens ; 11(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36558827

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious vesicular disease that affects cloven-hoofed animals and often causes enormous economic loss in the livestock industry. The capsid of FMD virus (FMDV) consists of four structural proteins. Initially, one copy each of the proteins VP0, VP3, and VP1 are folded together into a protomer, and five copies of the protomer compose a pentamer. Finally, 12 pentamers are assembled into an icosahedral capsid. At the maturation stage during RNA encapsidation, VP0 is cleaved into VP4 and VP2. The mechanism underlying VP0 maturation remains unclear. While monoclonal antibodies (mAbs) against VP2 have been developed in previous studies, a mAb specific to VP0 has not yet been reported. In this study, we generated VP0-specific mAbs by immunizing mice with peptides spanning the C-terminal amino acids of VP4 and N-terminal amino acids of VP2. We verified that these mAbs displayed specificity to VP0 with no reactivity to VP4 or VP2. Therefore, these mAbs could prove useful in identifying the role of VP0 in FMDV replication and elucidating the mechanism underlying VP0 cleavage into VP4 and VP2.

9.
Vaccines (Basel) ; 10(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632423

RESUMO

Foot-and-mouth disease (FMD) causes substantial economic losses in the livestock industry. The protective immunizing component of the FMD virus (FMDV) is a ribonucleoprotein particle with a sedimentation coefficient of 146S. Size-exclusion high-performance liquid chromatography (SE-HPLC) was introduced to replace sucrose density gradient ultracentrifugation (SDG), which is the gold standard for the quantification of FMDV 146S particles. SE-HPLC showed a pattern similar to that of SDG; however, the two methods resulted in different quantities for the same amount of 146S particles. This study aimed to identify the reason for this disparity and adjust the difference between the two methods by employing a standard material. While SE-HPLC displayed all the virus particles in the peak fraction by SDS-PAGE and Western blotting, the virus particles were widely dispersed in multiple fractions, including peak fractions in the SDG. To adjust the difference between the two methods, a stable surrogate virus, bovine enterovirus, was devised to draw a standard curve, and the gap was reduced to <10%. To our knowledge, this is the first report to provide experimental evidence on the difference between SDG and SE-HPLC for the quantification of FMDV particles.

10.
Vaccines (Basel) ; 10(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35891182

RESUMO

Foot-and-mouth disease (FMD) is an economically important and highly infectious viral disease, predominantly controlled by vaccination. The removal of non-structural proteins (NSPs) is very important in the process of FMD vaccine production, because vaccinated and naturally infected animals can be distinguished by the presence of NSP antibodies in the FMD serological surveillance. A previous study reported that 3AB protein, a representative of NSPs, was removed by chloroform treatment. Therefore, in this study, the causes of 3AB removal and factors affecting the effect of chloroform were investigated. As a result, the effectiveness of chloroform differed depending on the virus production medium and was eliminated by detergents. In addition, it was found that 3AB protein removal by chloroform is due to the transmembrane domain of the N-terminal region (59-76 amino acid domain). Further, industrial applicability was verified by applying the chloroform treatment process to scale-up FMD vaccine antigen production. A novel downstream process using ultrafiltration instead of polyethylene glycol precipitation for high-purity FMD vaccine antigen production was established. This result will contribute toward simplifying the conventional process of manufacturing FMD vaccine antigens and ultimately reducing the time and cost of vaccine production.

11.
Vaccines (Basel) ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835292

RESUMO

Foot-and-mouth disease (FMD), caused by the FMD virus (FMDV), is controlled by vaccine policy in many countries. For vaccine potency, the content of intact virus particles (146S antigens) is critical, and the sucrose density gradient (SDG) fractionation is the gold standard for the quantification of 146S antigens. However, this method has several drawbacks. Although size-exclusion high-performance liquid chromatography (SE-HPLC) was introduced to replace the classic method, its application is generally confined to purified samples owing to the interfering signals. Therefore, we aimed to develop optimal pretreatment methods for SE-HPLC quantification in less purified samples. Crude virus infection supernatant (CVIS) and semi-purified samples with PEG precipitation (PEG-P) were used. Chloroform pretreatment was essential to remove a high level of non-specific signals in CVIS, whereas it caused loss of 146S antigens without the distinctive removal of non-specific signals in PEG-P. Benzonase pretreatment was required to improve the resolution of the target peak in the chromatogram for both CVIS and PEG-P. Through spiking tests with pure 146S antigens, it was verified that the combined pretreatment with chloroform and benzonase was optimal for the CVIS, while the sole pretreatment of benzonase was beneficial for PEG-P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA