RESUMO
Enterovirus 71 (EV71) is the most virulent pathogen among enteroviruses that cause hand, foot and mouth disease in children but rarely in adults. The mechanisms that determine the age-dependent susceptibility remain largely unclear. Here, we found that the paucity of invariant natural killer T (iNKT) cells together with immaturity of the immune system was related to the susceptibility of neonatal mice to EV71 infection. iNKT cells were crucial antiviral effector cells to protect young mice from EV71 infection before their adaptive immune systems were fully mature. EV71 infection led to activation of iNKT cells depending on signaling through TLR3 but not other TLRs. Surprisingly, iNKT cell activation during EV71 infection required TLR3 signaling in macrophages, but not in dendritic cells (DCs). Mechanistically, interleukin (IL)-12 and endogenous CD1d-restricted antigens were both required for full activation of iNKT cells. Furthermore, CD1d-deficiency led to dramatically increased viral loads in central nervous system and more severe disease in EV71-infected mice. Altogether, our results suggest that iNKT cells may be involved in controlling EV71 infection in children when their adaptive immune systems are not fully developed, and also imply that iNKT cells might be an intervention target for treating EV71-infected patients.
Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Imunidade Celular , Macrófagos/imunologia , Células T Matadoras Naturais/imunologia , Receptor 3 Toll-Like/fisiologia , Animais , Células Cultivadas , Infecções por Enterovirus/genética , Humanos , Imunidade Celular/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Transdução de Sinais/imunologiaRESUMO
GLP-1 has been clinically exploited for treating type 2 diabetes, while its short circulation half-life requires multiple daily injections to maintain effective glycemic control, thus limiting its widespread application. Here we developed a drug delivery system based on self-assembling polymer-amino acid conjugates (γ-PGA-PAE) to provide sustained release of GLP-1 analog (DLG3312). The DLG3312 loaded γ-PGA based nanoparticles (DLG3312@NPs) exhibited a spherical shape with a good monodispersity under transmission electron microscope (TEM) observation. The DLG3312 encapsulation was optimized, and the loading efficiency was as high as 78.4 ± 2.2 %. The transformation of DLG3312@NPs to network structures was observed upon treatment with the fresh serum, resulting in a sustained drug release. The in vivo long-term hypoglycemic assays indicated that DLG3312@NPs significantly reduced blood glucose and glycosylated hemoglobin level. Furthermore, DLG3312@NPs extended the efficacy of DLG3312, leading to a decrease in the dosing schedule that from once a day to once every other day. This approach combined the molecular and materials engineering strategies that offered a unique solution to maximize the availability of anti-diabetic drug and minimize its burdens to type 2 diabetic patients.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Preparações de Ação Retardada/uso terapêutico , Hipoglicemiantes/uso terapêutico , Polímeros , Peptídeo 1 Semelhante ao Glucagon/uso terapêuticoRESUMO
Bacterial nanocellulose (BNC) has many advantages over plant cellulose, which make it widely used in many fields, especially in the food industry. In this study, three strains including BCA263, BCC529, and P1 were selected for characteristics analysis of BNCs under static and agitated culture conditions. The BNCs produced under static culture condition were in the shape of uniform membrane, while BNCs produced under agitated culture were in form of small agglomerates and fragments. BCA263 and BCC529 strains were more suitable for static culture, while P1 strain was more suitable for agitated culture. BNCs produced under static culture condition exhibited higher crystallinity, stronger tensile strength, denser network structure, higher temperature resistance and good flame retardancy; while BNCs produced under agitated culture condition exhibited larger porous and lower crystallinity. Furthermore, BNCs produced under agitated culture condition were more suitable as a stabilizer of coffee milk beverage.
Assuntos
Acetobacteraceae/metabolismo , Celulose/metabolismo , Nanopartículas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Animais , Técnicas Bacteriológicas , Celulose/química , Café , Conservação de Alimentos , Microscopia Eletrônica de Varredura , Leite , Nanopartículas/química , Nanopartículas/ultraestrutura , Polissacarídeos Bacterianos/químicaRESUMO
Bacterial cellulose (BC) has received considerable attention as an environment-friendly, biodegradable nanomaterial. In this study, the strain Komagataeibacter sp. nov. CGMCC 17276, which showed rapid cell growth and high BC-production ability, was isolated and classified into a novel species in the Komagataeibacter genus. Four BC synthase operons were annotated using whole-genome analysis, partially explaining the high BC yield of strain CGMCC 17276. Operons bcs â ¡ and bcs â ¢ showed high transcriptional levels under static and agitated culture conditions, indicating their importance in BC synthesis. Of the eight suitable carbon sources identified by whole-genome analysis, the highest BC production was achieved using glycerol as a single carbon source. Finally, waste glycerol was successfully used as an eco-friendly and sustainable strategy for BC production. This study provides valuable insights into the mechanism of BC synthesis, genetic structure of BC-producing strains, and industrialization of BC production using an eco-friendly and low-cost strategy.