Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Appl Microbiol Biotechnol ; 105(7): 2675-2692, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33743026

RESUMO

Aldehydes are ubiquitous electrophilic compounds that ferment microorganisms including Saccharomyces cerevisiae encounter during the fermentation processes to produce food, fuels, chemicals, and pharmaceuticals. Aldehydes pose severe toxicity to the growth and metabolism of the S. cerevisiae through a variety of toxic molecular mechanisms, predominantly via damaging macromolecules and hampering the production of targeted compounds. Compounds with aldehyde functional groups are far more toxic to S. cerevisiae than all other functional classes, and toxic potency depends on physicochemical characteristics of aldehydes. The yeast synthetic biology community established a design-build-test-learn framework to develop S. cerevisiae cell factories to valorize the sustainable and renewable biomass, including the lignin-derived substrates. However, thermochemically pretreated biomass-derived substrate streams contain diverse aldehydes (e.g., glycolaldehyde and furfural), and biological conversions routes of lignocellulosic compounds consist of toxic aldehyde intermediates (e.g., formaldehyde and methylglyoxal), and some of the high-value targeted products have aldehyde functional group (e.g., vanillin and benzaldehyde). Numerous studies comprehensively characterized both single and additive effects of aldehyde toxicity via systems biology investigations, and novel molecular approaches have been discovered to overcome the aldehyde toxicity. Based on those novel approaches, researchers successfully developed synthetic yeast cell factories to convert lignocellulosic substrates to valuable products, including aldehyde compounds. In this mini-review, we highlight the salient relationship of physicochemical characteristics and molecular toxicity of aldehydes, the molecular detoxification and macromolecules protection mechanisms of aldehydes, and the advances of engineering robust S. cerevisiae against complex mixtures of aldehyde inhibitors. KEY POINTS: • We reviewed structure-activity relationships of aldehyde toxicity on S. cerevisiae. • Two-tier protection mechanisms to alleviate aldehyde toxicity are presented. • We highlighted the strategies to overcome the synergistic toxicity of aldehydes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeídos/toxicidade , Fermentação , Furaldeído , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
FEMS Yeast Res ; 20(1)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917414

RESUMO

Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.


Assuntos
Celulose/metabolismo , Fermentação , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Biocombustíveis , Hexoses/metabolismo , Hidrólise , Microbiologia Industrial , Lignina/metabolismo , Pentoses/metabolismo , Saccharomyces cerevisiae/enzimologia
3.
Appl Microbiol Biotechnol ; 103(13): 5435-5446, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31001747

RESUMO

Bioconversion of lignocellulosic biomass into ethanol requires efficient xylose fermentation. Previously, we developed an engineered Saccharomyces cerevisiae strain, named SR8, through rational and inverse metabolic engineering strategies, thereby improving its xylose fermentation and ethanol production. However, its fermentation characteristics have not yet been fully evaluated. In this study, we investigated the xylose fermentation and metabolic profiles for ethanol production in the SR8 strain compared with native Scheffersomyces stipitis. The SR8 strain showed a higher maximum ethanol titer and xylose consumption rate when cultured with a high concentration of xylose, mixed sugars, and under anaerobic conditions than Sch. stipitis. However, its ethanol productivity was less on 40 g/L xylose as the sole carbon source, mainly due to the formation of xylitol and glycerol. Global metabolite profiling indicated different intracellular production rates of xylulose and glycerol-3-phosphate in the two strains. In addition, compared with Sch. stipitis, SR8 had increased abundances of metabolites from sugar metabolism and decreased abundances of metabolites from energy metabolism and free fatty acids. These results provide insights into how to control and balance redox cofactors for the production of fuels and chemicals from xylose by the engineered S. cerevisiae.


Assuntos
Fermentação , Lignina/metabolismo , Metaboloma , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Xilose/metabolismo , Biomassa , Reatores Biológicos , Cromatografia Gasosa , Etanol/metabolismo , Glicerofosfatos/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Xilulose/metabolismo
4.
Biotechnol Bioeng ; 115(12): 2859-2868, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30011361

RESUMO

Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a biodegradable surfactant, ethyl-ß-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular ß-glucosidase (GH1-1) originating from Neurospora crassa. We identified the formation of ethyl-ß-d-glucoside in SSF of cellulose by the EJ2 strain owing to transglycosylation activity of GH1-1. The EJ2 strain coproduced 0.34 ± 0.03 g ethanol/g cellulose and 0.06 ± 0.00 g ethyl-ß-d-glucoside/g cellulose at a rate of 0.30 ± 0.02 g·L-1 ·h-1 and 0.09 ± 01 g·L-1 ·h-1 , respectively, during the SSF of Avicel PH-101 cellulose, supplemented only with Celluclast 1.5 L. Herein, we report a possible coproduction of a value-added chemical (alkyl-glucosides) during SSF of cellulose exploiting the transglycosylation activity of GH1-1 in engineered S. cerevisiae. This coproduction could have a substantial effect on the overall technoeconomic feasibility of theSSF of cellulose.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Glucosídeos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosídeos/genética , Glicosilação , Neurospora crassa/enzimologia , Neurospora crassa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
5.
Metab Eng ; 40: 176-185, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28216106

RESUMO

Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A) exhibited a 14% higher ethanol yield and 46% lower byproduct yield than the IIK1 strain from anaerobic fermentation of the Miscanthus hydrolysate. Our results demonstrate that industrial yeast strains can be engineered via haploid isolation. The isolated haploid strain (4124-S60) can be used for metabolic engineering to produce fuels and chemicals.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Acetatos/metabolismo , Vias Biossintéticas/genética , Etanol/isolamento & purificação , Haploidia , Redes e Vias Metabólicas/genética , Especificidade da Espécie
6.
J Ind Microbiol Biotechnol ; 44(3): 387-395, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28070721

RESUMO

Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+-linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.


Assuntos
Fermentação , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Biocombustíveis/microbiologia , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Microbiologia Industrial , Lignina/metabolismo , Microrganismos Geneticamente Modificados , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Engenharia de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Xilitol/metabolismo
7.
Biotechnol Bioeng ; 113(12): 2587-2596, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27240865

RESUMO

Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+ -linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited for in situ detoxification of acetic acid in cellulosic hydrolysate and increasing ethanol productivity and yield. Biotechnol. Bioeng. 2016;113: 2587-2596. © 2016 Wiley Periodicals, Inc.


Assuntos
Acetatos/metabolismo , Aldeído Oxirredutases/metabolismo , Celulose/metabolismo , Coenzima A Ligases/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/fisiologia , Aldeído Oxirredutases/genética , Coenzima A Ligases/genética , Etanol/isolamento & purificação , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Oxirredução , Transdução de Sinais/fisiologia
8.
Metab Eng ; 29: 46-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724339

RESUMO

Fermentation inhibitors present in lignocellulose hydrolysates are inevitable obstacles for achieving economic production of biofuels and biochemicals by industrial microorganisms. Here we show that spermidine (SPD) functions as a chemical elicitor for enhanced tolerance of Saccharomyces cerevisiae against major fermentation inhibitors. In addition, the feasibility of constructing an engineered S. cerevisiae strain capable of tolerating toxic levels of the major inhibitors without exogenous addition of SPD was explored. Specifically, we altered expression levels of the genes in the SPD biosynthetic pathway. Also, OAZ1 coding for ornithine decarboxylase (ODC) antizyme and TPO1 coding for the polyamine transport protein were disrupted to increase intracellular SPD levels through alleviation of feedback inhibition on ODC and prevention of SPD excretion, respectively. Especially, the strain with combination of OAZ1 and TPO1 double disruption and overexpression of SPE3 not only contained spermidine content of 1.1mg SPD/g cell, which was 171% higher than that of the control strain, but also exhibited 60% and 33% shorter lag-phase period than that of the control strain under the medium containing furan derivatives and acetic acid, respectively. While we observed a positive correlation between intracellular SPD contents and tolerance phenotypes among the engineered strains accumulating different amounts of intracellular SPD, too much SPD accumulation is likely to cause metabolic burden. Therefore, genetic perturbations for intracellular SPD levels should be optimized in terms of metabolic burden and SPD contents to construct inhibitor tolerant yeast strains. We also found that the genes involved in purine biosynthesis and cell wall and chromatin stability were related to the enhanced tolerance phenotypes to furfural. The robust strains constructed in this study can be applied for producing chemicals and advanced biofuels from cellulosic hydrolysates.


Assuntos
Farmacorresistência Fúngica , Lignina , Engenharia Metabólica , Saccharomyces cerevisiae , Espermidina/biossíntese , Antiporters/genética , Antiporters/metabolismo , Lignina/metabolismo , Lignina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Biotechnol Bioeng ; 112(5): 1012-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25421388

RESUMO

Yarrowia lipolytica is a promising production host for a wide range of molecules, but limited sugar consumption abilities prevent utilization of an abundant source of renewable feedstocks. In this study we created a Y. lipolytica strain capable of utilizing cellobiose as a sole carbon source by using endogenous promoters to express the cellodextrin transporter cdt-1 and intracellular ß-glucosidase gh1-1 from Neurospora crassa. The engineered strain was also capable of simultaneous co-consumption of glucose and cellobiose. Although cellobiose was consumed slower than glucose when engineered strains were cultured with excess nitrogen, culturing with limited nitrogen led to cellobiose consumption rates comparable to those of glucose. Under limited nitrogen conditions, the engineered strain produced citric acid as a major product and we observed greater citric acid yields from cellobiose (0.37 g/g) than glucose (0.28 g/g). Culturing with a sole carbon source of either glucose or cellobiose induced additional differences on cell physiology and metabolism and a link is suggested to evasion of glucose-sensing mechanisms through intracellular creation and consumption of glucose. We ultimately applied this cellobiose-utilization system to produce citric acid from bioconversion of crystalline cellulose through simultaneous saccharification and fermentation (SSF).


Assuntos
Celobiose/metabolismo , Engenharia Metabólica/métodos , Yarrowia/metabolismo , Biocombustíveis/microbiologia , Celulose/análogos & derivados , Celulose/metabolismo , Ácido Cítrico/metabolismo , Dextrinas/metabolismo , Fermentação , Expressão Gênica , Lignina/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/genética , Yarrowia/enzimologia , Yarrowia/genética , beta-Glucosidase/metabolismo
10.
Appl Microbiol Biotechnol ; 98(3): 1087-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24190499

RESUMO

Saccharomyces cerevisiae can be engineered to ferment cellodextrins produced by cellulases as a product of cellulose hydrolysis. Direct fermentation of cellodextrins instead of glucose is advantageous because glucose inhibits cellulase activity and represses the fermentation of non-glucose sugars present in cellulosic hydrolyzates. To facilitate cellodextrin utilization by S. cerevisiae, a fungal cellodextrin-utilizing pathway from Neurospora crassa consisting of a cellodextrin transporter and a cellodextrin hydrolase has been introduced into S. cerevisiae. Two cellodextrin transporters (CDT-1 and CDT-2) were previously identified in N. crassa, but their kinetic properties and efficiency for cellobiose fermentation have not been studied in detail. In this study, CDT-1 and CDT-2, which are hypothesized to transport cellodextrin with distinct mechanisms, were introduced into S. cerevisiae along with an intracellular ß-glucosidase (GH1-1). Cellobiose transport assays with the resulting strains indicated that CDT-1 is a proton symporter while CDT-2 is a simple facilitator. A strain expressing CDT-1 and GH1-1 (DCDT-1G) showed faster cellobiose fermentation than the strain expressing CDT-2 and GH1-1 (DCDT-2G) under various culture conditions with different medium compositions and aeration levels. While CDT-2 is expected to have energetic benefits, the expression levels and kinetic properties of CDT-1 in S. cerevisiae appears to be optimum for cellobiose fermentation. These results suggest CDT-1 is a more effective cellobiose transporter than CDT-2 for engineering S. cerevisiae to ferment cellobiose.


Assuntos
Celobiose/metabolismo , Celulose/análogos & derivados , Dextrinas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neurospora crassa/enzimologia , Celulose/metabolismo , Fermentação , Proteínas de Membrana Transportadoras/genética , Neurospora crassa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Metab Eng ; 15: 134-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23178501

RESUMO

Anaerobic bacteria assimilate cellodextrins from plant biomass by using a phosphorolytic pathway to generate glucose intermediates for growth. The yeast Saccharomyces cerevisiae can also be engineered to ferment cellobiose to ethanol using a cellodextrin transporter and a phosphorolytic pathway. However, strains with an intracellular cellobiose phosphorylase initially fermented cellobiose slowly relative to a strain employing an intracellular ß-glucosidase. Fermentations by the phosphorolytic strains were greatly improved by using cellodextrin transporters with elevated rates of cellobiose transport. Furthermore under stress conditions, these phosphorolytic strains had higher biomass and ethanol yields compared to hydrolytic strains. These observations suggest that, although cellobiose phosphorolysis has energetic advantages, phosphorolytic strains are limited by the thermodynamics of cellobiose phosphorolysis (ΔG°=+3.6kJmol(-1)). A thermodynamic "push" from the reaction immediately upstream (transport) is therefore likely to be necessary to achieve high fermentation rates and energetic benefits of phosphorolysis pathways in engineered S. cerevisiae.


Assuntos
Celobiose/metabolismo , Celulose/análogos & derivados , Dextrinas/metabolismo , Etanol/metabolismo , Melhoramento Genético/métodos , Glucosiltransferases/genética , Saccharomyces cerevisiae/fisiologia , Celulose/genética , Celulose/metabolismo , Dextrinas/genética , Fermentação , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos
12.
J Microbiol Biotechnol ; 32(1): 117-125, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949751

RESUMO

Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular ß-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular ß-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.


Assuntos
Celobiose/biossíntese , Celobiose/genética , Fermentação , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biomassa , Reatores Biológicos , Celulose/análogos & derivados , Celulose/metabolismo , Dextrinas , Etanol , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Hidrólise , beta-Glucosidase/biossíntese , beta-Glucosidase/genética
13.
Appl Environ Microbiol ; 77(16): 5822-5, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21705527

RESUMO

We demonstrate improved ethanol yield and productivity through cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain expressing genes coding for cellodextrin transporter (cdt-1) and intracellular ß-glucosidase (gh1-1) from Neurospora crassa. Simultaneous fermentation of cellobiose and galactose can be applied to producing biofuels from hydrolysates of marine plant biomass.


Assuntos
Celobiose/metabolismo , Fermentação , Galactose/metabolismo , Engenharia Genética , Saccharomyces cerevisiae/metabolismo , Celulose/análogos & derivados , Celulose/metabolismo , Dextrinas/metabolismo , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neurospora crassa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , beta-Glucosidase/metabolismo
14.
J Microbiol Biotechnol ; 31(7): 1035-1043, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34226403

RESUMO

Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular ß-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular ß-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.


Assuntos
Celobiose/metabolismo , Celulose/análogos & derivados , Dextrinas/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucosidase/metabolismo , Biocombustíveis , Celulose/metabolismo , Etanol/metabolismo , Fermentação , Glicosilação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Engenharia Metabólica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Via Secretória/genética , beta-Glucosidase/genética
15.
Nat Commun ; 12(1): 4975, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404791

RESUMO

Plant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass.


Assuntos
Parede Celular/metabolismo , Engenharia Metabólica , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Biomassa , Reatores Biológicos , Fermentação , Lignina , Pironas/metabolismo , Saccharomyces cerevisiae/genética , Vitamina A/metabolismo , Xilose/metabolismo
16.
Nat Biotechnol ; 25(3): 319-26, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17334359

RESUMO

Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions.


Assuntos
Vias Biossintéticas/genética , Celulose/metabolismo , Genoma Bacteriano/genética , Lignina/metabolismo , Pichia/genética , Xilose/metabolismo , Biomassa , DNA Fúngico/análise , Fermentação , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Pichia/enzimologia , Alinhamento de Sequência , Análise de Sequência de DNA
17.
J Biotechnol ; 275: 53-59, 2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-29660472

RESUMO

To efficiently ferment intermediate cellodextrins released during cellulose hydrolysis, Saccharomyces cerevisiae has been engineered by introduction of a heterologous cellodextrin utilizing pathway consisting of a cellodextrin transporter and either an intracellular ß-glucosidase or a cellobiose phosphorylase. Among two types of cellodextrin transporters, the passive facilitator CDT-2 has not enabled better cellobiose fermentation than the active transporter CDT-1, which suggests that the CDT-2 might be engineered to provide energetic benefits over the active transporter in cellobiose fermentation. We attempted to improve cellobiose transporting activity of CDT-2 through laboratory evolution. Nine rounds of a serial subculture of S. cerevisiae expressing CDT-2 and cellobiose phosphorylase on cellobiose led to the isolation of an evolved strain capable of fermenting cellobiose to ethanol 10-fold faster than the original strain. After sequence analysis of the isolated CDT-2, a single point mutation on CDT-2 (N306I) was revealed to be responsible for enhanced cellobiose fermentation. Also, the engineered strain expressing the mutant CDT-2 with cellobiose phosphorylase showed a higher ethanol yield than the engineered strain expressing CDT-1 and intracellular ß-glucosidase under anaerobic conditions, suggesting that CDT-2 coupled with cellobiose phosphorylase may be better choices for efficient production of cellulosic ethanol with the engineered yeast.


Assuntos
Celobiose/química , Glucosiltransferases/genética , Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Celulose/análogos & derivados , Celulose/metabolismo , Dextrinas/metabolismo , Fermentação , Glucosiltransferases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Engenharia Metabólica , Proteínas Recombinantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
J Microbiol Biotechnol ; 27(9): 1649-1656, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28683531

RESUMO

In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular ß-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular ß-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.


Assuntos
Celobiose/metabolismo , Etanol/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Biomassa , Celulose/metabolismo , Etanol/análise , Fermentação , Glucosiltransferases/metabolismo , Plasmídeos , Saccharomyces cerevisiae/genética
19.
Curr Opin Chem Biol ; 41: 99-106, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29127883

RESUMO

Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation.


Assuntos
Biocombustíveis/microbiologia , Lignina/biossíntese , Engenharia Metabólica/métodos , Leveduras/genética , Leveduras/metabolismo
20.
Bioresour Technol ; 228: 355-361, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28088640

RESUMO

Even though industrial yeast strains exhibit numerous advantageous traits for the production of bioethanol, their genetic manipulation has been limited. This study demonstrates that an industrial polyploidy Saccharomyces cerevisiae JHS200 can be engineered through Cas9 (CRISPR associated protein 9)-based genome editing. Specifically, we generated auxotrophic mutants and introduced a xylose metabolic pathway into the auxotrophic mutants. As expected, the engineered strain (JX123) enhanced ethanol production from cellulosic hydrolysates as compared to other engineered haploid strains. However, the JX123 strain produced substantial amounts of xylitol as a by-product during xylose fermentation. Hypothesizing that the xylitol accumulation might be caused by intracellular redox imbalance from cofactor difference, the NADH oxidase from Lactococcus lactis was introduced into the JX123 strain. The resulting strain (JX123_noxE) not only produced more ethanol, but also produced xylitol less than the JX123 strain. These results suggest that industrial polyploidy yeast can be modified for producing biofuels and chemicals.


Assuntos
Biocombustíveis/microbiologia , Celulose/metabolismo , Etanol/metabolismo , Microbiologia Industrial , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Hidrólise , Lignina/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação/genética , NADH NADPH Oxirredutases/metabolismo , Fenótipo , Saccharomyces cerevisiae/isolamento & purificação , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA