Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1338, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288556

RESUMO

Gelatinous underwater invertebrates such as jellyfish have organs that are transparent, luminescent and self-healing, which allow the creatures to navigate, camouflage themselves and, indeed, survive in aquatic environments. Artificial luminescent materials that can mimic such functionality can be used to develop aquatic wearable/stretchable displays and water-resistant devices. Here, a luminescent composite that is simultaneously transparent, tough and can autonomously self-heal in both dry and wet conditions is reported. A tough, self-healable fluorine elastomer with dipole-dipole interactions is synthesized as the polymer matrix. It exhibits excellent compatibility with metal halide perovskite quantum dots. The composite possesses a toughness of 19 MJ m-3, maximum strain of 1300% and capability to autonomously self-heal underwater. Notably, the material can withstand extremely harsh aqueous conditions, such as highly salty, acidic (pH = 1) and basic (pH = 13) environment for more than several months with almost no decay in mechanical performance or optical properties.


Assuntos
Elastômeros , Polímeros , Compostos de Cálcio , Elastômeros/química , Óxidos , Polímeros/química , Titânio
2.
Nat Commun ; 13(1): 2279, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477583

RESUMO

Ligaments are flexible and stiff tissues around joints to support body movements, showing superior toughness and fatigue-resistance. Such a combination of mechanical properties is rarely seen in synthetic elastomers because stretchability, stiffness, toughness, and fatigue resistance are seemingly incompatible in materials design. Here we resolve this long-standing mismatch through a hierarchical crosslinking design. The obtained elastomer can endure 30,000% stretch and exhibit a Young's modulus of 18 MPa and toughness of 228 MJ m-3, outperforming all the reported synthetic elastomers. Furthermore, the fatigue threshold is as high as 2,682 J m-2, the same order of magnitude as the ligaments (~1,000 J m-2). We reveal that the dynamic double-crosslinking network composed of Li+-O interactions and PMMA nanoaggregates allows for a hierarchical energy dissipation, enabling the elastomers as artificial ligaments in soft robotics.


Assuntos
Elastômeros , Ligamentos , Fenômenos Químicos , Módulo de Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA