Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Asian J ; 10(10): 2264-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25965188

RESUMO

Artesunic acid (ASH), an antimalarial drug, has low oral bioavailability due to its low aqueous solubility. To overcome this problem, artesunate (AS) was intercalated into zinc basic salt (ZBS) via co-precipitation. AS was immobilized with a tilted double layer arrangement, which was also confirmed by XRD and 1-D electron density mapping. In order to decrease the release rate of AS under gastrointestinal conditions and to simultaneously increase the release rate of AS under intestinal conditions, ZBS-AS was coated with EUDRAGIT L100 (ZBS-AS-L100). Finally, we performed an in-vivo pharmacokinetic study to compare the oral bioavailability of AS of ZBS-AS-L100 with that of ASH. Surprisingly, it was found that the former is 5.5 times greater than the latter due to an enhanced solubility of AS thanks to the ternary hybridization with ZBS and EUDRAGIT L100. Therefore, the present ZBS-AS-L100 system has a great potential as a novel antimalarial drug formulation with pH selectivity and enhanced bioavailability.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacocinética , Artemisininas/química , Artemisininas/farmacocinética , Polímeros/química , Succinatos/química , Succinatos/farmacocinética , Animais , Disponibilidade Biológica , Precipitação Química , Concentração de Íons de Hidrogênio , Masculino , Ácidos Polimetacrílicos , Ratos , Ratos Sprague-Dawley , Solubilidade , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA