Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Microsurgery ; 42(5): 480-489, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35670105

RESUMO

INTRODUCTION: In free flaps, 5%-10% of complications are related to failure of sutured vascular anastomoses. Adhesive-based microvascular anastomoses are potential alternatives but are associated with failure rates of 70% in research studies. VIVO is a new adhesive with slow biodegradation within 6 months that has shown a 100% patency rate in research studies over 2 h observation time but long-term patency has not been evaluated. The authors hypothesize that VIVO will enable a reliable microvascular procedure comparable to sutured anastomoses over a 28-day period. MATERIALS AND METHODS: The right common carotid artery of 60 male Sprague Dawley rats, ~450 g, were used for microvascular end-to-end anastomosis. VIVO was applied with reduced sutures with a temporary catheter in one group and in the other with a custom-shaped memory stent. Anastomoses with eight interrupted sutures served as control. All groups were n = 20. Anastomosis time and bleeding were recorded for each procedure. Doppler flowmetry was performed 20 min, 1, 10, and 28 days postoperatively. Postmortem toluidine staining was used for semi-quantitative analysis of stenosis, thrombosis, necrosis, and aneurysm formation by histologic evaluation. RESULTS: No occlusion was detected 20 min and 1 day postoperative, and after 28 days of observation in all anastomoses. The anastomosis time of the VIVO with catheter group was about 32% significantly faster than the VIVO with stent group. In the VIVO group with stent, the bleeding time was ~80% shorter than in the control group with 2.1 ± 0.3 and VIVO with catheter 2.0 ± 0.5 (p ≤ .001 each). Minor and nonsignificant stent-associated thrombus formation and stent-typical intraluminal stenosis were detected exclusively in the VIVO with stent group. CONCLUSION: Within the limitations of a rat study, the use of VIVO in anastomosis showed promising results. VIVO with catheter was found to be advantageous.


Assuntos
Poliuretanos , Trombose , Adesivos , Anastomose Cirúrgica/métodos , Animais , Artérias Carótidas , Artéria Carótida Primitiva/cirurgia , Constrição Patológica , Masculino , Microcirurgia/métodos , Ratos , Ratos Sprague-Dawley , Stents , Grau de Desobstrução Vascular
2.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628199

RESUMO

Gastrointestinal anastomoses are an important source of postoperative complications. In particular, the ideal suturing material is still the subject of investigation. Therefore, this study aimed to evaluate a newly developed suturing material with elastic properties made from thermoplastic polyurethane (TPU); Polyvinylidene fluoride (PVDF) and TPU were tested in two different textures (round and a modified, "snowflake" structure) in 32 minipigs, with two anastomoses of the small intestine sutured 2 m apart. After 90 days, the anastomoses were evaluated for inflammation, the healing process, and foreign body reactions. A computer-assisted immunohistological analysis of staining for Ki67, CD68, smooth muscle actin (SMA), and Sirius red was performed using TissueFAXS. Additionally, the in vivo elastic properties of the material were assessed by measuring the suture tension in a rabbit model. Each suture was tested twice in three rabbits; No major surgical complications were observed and all anastomoses showed adequate wound healing. The Ki67+ count and SMA area differed between the groups (F (3, 66) = 5.884, p = 0.0013 and F (3, 56) = 6.880, p = 0.0005, respectively). In the TPU-snowflake material, the Ki67+ count was the lowest, while the SMA area provided the highest values. The CD68+ count and collagen I/III ratio did not differ between the groups (F (3, 69) = 2.646, p = 0.0558 and F (3, 54) = 0.496, p = 0.686, respectively). The suture tension measurements showed a significant reduction in suture tension loss for both the TPU threads; Suturing material made from TPU with elastic properties proved applicable for intestinal anastomoses in a porcine model. In addition, our results suggest a successful reduction in tissue incision and an overall suture tension homogenization.


Assuntos
Poliuretanos , Suturas , Anastomose Cirúrgica , Animais , Estudos de Viabilidade , Antígeno Ki-67 , Poliuretanos/química , Coelhos , Suínos , Porco Miniatura
3.
Artif Organs ; 44(10): E419-E433, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32320079

RESUMO

Endothelialized oxygenator devices (EndOxy) with a physiological, nonthrombogenic, and anti-inflammatory surface offer the potential to overcome current shortcomings of conventional extracorporeal membrane oxygenation such as complications like thromboembolism and bleeding that deteriorate adequate long-term hemocompatibility. The approach of endothelialization of gas exchange membranes, and thus the formation of a nonthrombogenic and anti-inflammatory surface, is promising. In this study, we investigated the mid-term shear stress resistance as well as gas transfer rates and cell densities of endothelial cells seeded on RGD-conjugated polydimethylsiloxane (RGD-PDMS) gas exchange membranes under dynamic conditions. Human umbilical vein endothelial cells were seeded on RGD-PDMS and exposed to defined shear stresses in a microfluidic bioreactor. Endothelial cell morphology was assessed by bright field microscopy and immunocytochemistry. Furthermore, gas transfer measurement of blank, RGD-conjugated, and endothelialized PDMS oxygenator membranes was performed. RGD-PDMS gas exchange membranes proved suitable for the dynamic culture of endothelial cells for up to 21 days at a wall shear stress of 2.9 dyn/cm2 . Furthermore, the cells resisted increased wall shear stresses up to 8.6 dyn/cm2 after a previous dynamic preculture of each one hour at 2.9 dyn/cm2 and 5.7 dyn/cm2 . Also, after a longer dynamic preculture of three days at 2.9 dyn/cm2 and one hour at 5.7 dyn/cm2 , increased wall shear stresses of 8.6 dyn/cm2 were tolerated by the cells and cell integrity could be remained. Gas transfer (GT) tests revealed that neither RGD conjugation nor endothelialization of RGD-PDMS significantly decrease the gas transfer rates of the membranes during short-term trials. Gas transfer rates are stable for at least 72 hours of dynamic cultivation of endothelial cells. Immunocytochemistry showed that the cell layer stained positive for typical endothelial cell markers CD31 and von Willebrand factor (VWF) after all trials. Cell density of EC on RGD-PDMS increased between 3 and 21 days of dynamic culture. In this study, we show the suitability of RGD-PDMS membranes for flow resistant endothelialization of gas-permeable membranes, demonstrating the feasibility of this approach for a biohybrid lung.


Assuntos
Dimetilpolisiloxanos/química , Oxigenação por Membrana Extracorpórea/instrumentação , Oligopeptídeos/química , Oxigenadores de Membrana , Reatores Biológicos , Adesão Celular , Oxigenação por Membrana Extracorpórea/efeitos adversos , Estudos de Viabilidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Oxigênio/metabolismo , Estresse Mecânico
4.
Int J Mol Sci ; 21(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545804

RESUMO

Rapid vascularization is required for the regeneration of dental pulp due to the spatially restricted tooth environment. Extracellular vesicles (EVs) released from mesenchymal stromal cells show potent proangiogenic effects. Since EVs suffer from rapid clearance and low accumulation in target tissues, an injectable delivery system capable of maintaining a therapeutic dose of EVs over a longer period would be desirable. We fabricated an EV-fibrin gel composite as an in situ forming delivery system. EVs were isolated from dental pulp stem cells (DPSCs). Their effects on cell proliferation and migration were monitored in monolayers and hydrogels. Thereafter, endothelial cells and DPSCs were co-cultured in EV-fibrin gels and angiogenesis as well as collagen deposition were analyzed by two-photon laser microscopy. Our results showed that EVs enhanced cell growth and migration in 2D and 3D cultures. EV-fibrin gels facilitated vascular-like structure formation in less than seven days by increasing the release of VEGF. The EV-fibrin gel promoted the deposition of collagen I, III, and IV, and readily induced apoptosis during the initial stage of angiogenesis. In conclusion, we confirmed that EVs from DPSCs can promote angiogenesis in an injectable hydrogel in vitro, offering a novel and minimally invasive strategy for regenerative endodontic therapy.


Assuntos
Polpa Dentária/citologia , Vesículas Extracelulares/metabolismo , Fibrina/química , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Mesenquimais/citologia , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Colágeno/metabolismo , Polpa Dentária/fisiologia , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Regeneração , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Biomaterials ; 311: 122669, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38906013

RESUMO

Biohybrid tissue-engineered vascular grafts (TEVGs) promise long-term durability due to their ability to adapt to hosts' needs. However, the latter calls for sensitive non-invasive imaging approaches to longitudinally monitor their functionality, integrity, and positioning. Here, we present an imaging approach comprising the labeling of non-degradable and degradable TEVGs' components for their in vitro and in vivo monitoring by hybrid 1H/19F MRI. TEVGs (inner diameter 1.5 mm) consisted of biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers passively incorporating superparamagnetic iron oxide nanoparticles (SPIONs), non-degradable polyvinylidene fluoride scaffolds labeled with highly fluorinated thermoplastic polyurethane (19F-TPU) fibers, a smooth muscle cells containing fibrin blend, and endothelial cells. 1H/19F MRI of TEVGs in bioreactors, and after subcutaneous and infrarenal implantation in rats, revealed that PLGA degradation could be faithfully monitored by the decreasing SPIONs signal. The 19F signal of 19F-TPU remained constant over weeks. PLGA degradation was compensated by cells' collagen and α-smooth-muscle-actin deposition. Interestingly, only TEVGs implanted on the abdominal aorta contained elastin. XTT and histology proved that our imaging markers did not influence extracellular matrix deposition and host immune reaction. This concept of non-invasive longitudinal assessment of cardiovascular implants using 1H/19F MRI might be applicable to various biohybrid tissue-engineered implants, facilitating their clinical translation.


Assuntos
Prótese Vascular , Imageamento por Ressonância Magnética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Imageamento por Ressonância Magnética/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Humanos , Masculino , Ácido Poliglicólico/química , Ácido Láctico/química , Poliuretanos/química , Miócitos de Músculo Liso/citologia , Materiais Biocompatíveis/química , Ratos Sprague-Dawley , Nanopartículas Magnéticas de Óxido de Ferro/química
6.
Biomed Eng Online ; 12: 7, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23356939

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) can replace the lungs' gas exchange capacity in refractory lung failure. However, its limited hemocompatibility, the activation of the coagulation and complement system as well as plasma leakage and protein deposition hamper mid- to long-term use and have constrained the development of an implantable lung assist device. In a tissue engineering approach, lining the blood contact surfaces of the ECMO device with endothelial cells might overcome these limitations. As a first step towards this aim, we hypothesized that coating the oxygenator's gas exchange membrane with proteins might positively influence the attachment and proliferation of arterial endothelial cells. METHODS: Sheets of polypropylene (PP), polyoxymethylpentene (TPX) and polydimethylsiloxane (PDMS), typical material used for oxygenator gas exchange membranes, were coated with collagen, fibrinogen, gelatin or fibronectin. Tissue culture treated well plates served as controls. Endothelial cell attachment and proliferation were analyzed for a period of 4 days by microscopic examination and computer assisted cell counting. RESULTS: Endothelial cell seeding efficiency is within range of tissue culture treated controls for fibronectin treated surfaces only. Uncoated membranes as well as all other coatings lead to lower cell attachment. A confluent endothelial cell layer develops on fibronectin coated PDMS and the control surface only. CONCLUSIONS: Fibronectin increases endothelial cells' seeding efficiency on different oxygenator membrane material. PDMS coated with fibronectin shows sustained cell attachment for a period of four days in static culture conditions.


Assuntos
Células Endoteliais/citologia , Fibronectinas/química , Oxigenadores de Membrana , Animais , Materiais Biocompatíveis , Adesão Celular , Colágeno/química , Dimetilpolisiloxanos/química , Endotélio Vascular/citologia , Oxigenação por Membrana Extracorpórea/métodos , Fibrinogênio/química , Gelatina/química , Polipropilenos/química , Ovinos , Técnicas de Cultura de Tecidos , Engenharia Tecidual/métodos
7.
J Biomed Mater Res A ; 111(8): 1110-1119, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36583666

RESUMO

Polypropylene degradation in vivo appears as mesh surface cracking and peeling. This aging process of the mesh, resulting in the lack of bio-stability, contradicts the requirement of biocompatibility. However, to date, it is still not clearly established how much this mesh degradation influences the local tissue response with subsequent clinical consequences. This study aims to find out whether mesh degradation is correlated with elevated inflammatory tissue reaction through analyzing 100 human PP meshes explanted from the pelvic floor. A degradation classification method, based on standard pathological H&E stained slides of the explanted mesh via light microscope, was developed to classify the mesh degradation into four classes (no, mild, moderate and severe degradation). The peri-filamentary tissue inflammatory reaction was analyzed by scoring the expression of the most common cell markers for the innate immune reaction: CD68 as marker for macrophage, CD86 for M1 subtype, CD163 for M2 subtype, CD3 for T-lymphocyte and CD15 for neutrophil granulocytes. The correlation between immune cell expression, degradation classification and time of implantation of the meshes are evaluated with Spearman-Rho-Test. Mesh degradation worsens significantly (p < .001) with longer time of implantation. The increasing tendency of CD68 expression by mesh with higher degradation class indicates that the number of macrophages increases with worsening mesh degradation. The significantly increased expression of CD163 and CD3 cell by severely degraded mesh demonstrate the increased number of M2 and T-Lymphocyte when mesh degradation becomes severe. None of the inflammatory cells show the usual declining expression with longer time of implantation. The result of this study suggests that the degradation of PP mesh results in an elevated local inflammatory reaction in female pelvic floor. A material with better bio-stability for mesh implant in pelvic floor is required.


Assuntos
Polipropilenos , Telas Cirúrgicas , Humanos , Feminino , Polipropilenos/efeitos adversos , Telas Cirúrgicas/efeitos adversos , Inflamação/metabolismo , Macrófagos/metabolismo , Próteses e Implantes
8.
Int J Biol Macromol ; 233: 123655, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780965

RESUMO

Long-term topical application of antibiotics on wounds has led to the emergence of drug-resistant bacterial infections. Antibiotic incorporation into the wound dressing requires enormous advancement of the field to ensure that the needed dose is released when the infection arises. This study synthesized a series of antimicrobial α-aminophosphonate derivatives, and the most effective compound was incorporated into thermoresponsive wound dressing patches. Wound dressing mats were fabricated by needleless electrospinning, and the resultant nanofiber mats were coated with a thermoresponsive eicosane/cellulose nanocrystals o/w system loaded with active α-aminophosphonate derivatives. Chemical, physical, thermal, and antimicrobial properties of the wound dressings were characterized wound dressings. Using SEM analysis, Nanofibers spun with 20 % w/v solutions were selected for drug-emulsion loading since they showed lower diameters with higher surface area. Furthermore, the drug-emulsion coating on the electrospun dressings improved the hydrophilicity of the wound dressings, and the thermoresponsive behavior of the mats was proved using differential scanning calorimetry data. Finally, the drug-loaded electrospun meshes were found active against tested microorganisms, and clear inhibition zones were observed. In conclusion, this novel approach of synthesizing a new family of antimicrobial molecules and their incorporation into nanofibers from renewable sources exhibits great potential for smart and innovative dressings.


Assuntos
Anti-Infecciosos , Nanofibras , Nanopartículas , Nanofibras/química , Celulose/química , Emulsões/farmacologia , Cicatrização , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
9.
J Mater Chem B ; 11(30): 7144-7159, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37403540

RESUMO

Microbial infection is the most common obstacle in the wound healing process, leading to wound healing impairment and complications and ultimately increasing morbidity and mortality. Due to the rising number of pathogens evolving resistance to the existing antibiotics used for wound care, alternative approaches are urgently required. In this study, α-aminophosphonate derivatives as antimicrobial agents were synthesized and incorporated into self-crosslinked tri-component cryogels composed of fully hydrolyzed polyvinyl alcohol (PVA-F), partially hydrolyzed polyvinyl alcohol (PVA-P), and cellulose nanofibrils (CNFs). Initially, the antimicrobial activity of four α-aminophosphonate derivatives against selected skin bacterial species was tested and their minimum inhibitory concentration was determined based on which the most effective compound was loaded into the cryogels. Next, the physical and mechanical properties of cryogels with various blending ratios of PVA-P/PVA-F and fixed amounts of CNFs were assessed, and drug release profiles and biological activities of drug-loaded cryogels were analyzed. Assessment of α-aminophosphonate derivatives showed the highest efficacy of a cinnamaldehyde-based derivative (Cinnam) against both Gram-negative and Gram-positive bacteria compared to other derivatives. The physical and mechanical properties of cryogels showed that PVA-P/PVA-F with a 50/50 blending ratio had the highest swelling ratio (1600%), surface area (523 m2 g-1), and compression recoverability (72%) compared to that with other blending ratios. Finally, antimicrobial and biofilm development studies showed that the cryogel loaded with a Cinnam amount of 2 mg (relative to polymer weight) showed the most sustained drug release profile over 75 h and had the highest efficacy against Gram-negative and Gram-positive bacteria. In conclusion, self-crosslinked tri-component cryogels loaded with the synthesized α-aminophosphonate derivative, having both antimicrobial and anti-biofilm formation properties, can have a significant impact on the management of uprising wound infection.


Assuntos
Anti-Infecciosos , Criogéis , Álcool de Polivinil , Celulose , Bandagens
10.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311209

RESUMO

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Assuntos
Células-Tronco , Engenharia Tecidual , Humanos , Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/farmacologia
11.
J Biomed Mater Res B Appl Biomater ; 110(8): 1922-1931, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35293688

RESUMO

Peri- and postoperative anastomotic leakage from blood vessel anastomosis is a common and potentially life-threatening complication. As an adjunctive therapy providing an additional layer of safety, a new biodegradable, polyurethane-based adhesive was developed. It consists of two components: an isocyanate-functionalized prepolymer and an amino-based curing agent. The adhesive was investigated in a porcine animal model to seal sutured blood vessel anastomoses of arteries, veins, aortas and prosthetic aortic graft replacements. The material-determined properties of the adhesive like viscosity, processing and polymerization time as well as bonding strength were well suited for this application. The adhesive stopped perioperative suture-line bleedings and stayed on all anastomoses until sacrifice. Hematological and serological inflammation marker assessments were unobtrusive. The histological evaluation showed a mild to moderate local tissue reaction to the adhesive constituting a physiological, non-adverse tissue-biomaterial interaction. The adhesive did not interfere with vascular wound healing. The adhesive demonstrated to be suitable to improve the outcome of cardiovascular surgeries by securing the classical sutured anastomoses in a fast, easy and safe manner. However, further studies are required to quantitatively evaluate efficacy in terms of anastomotic leakage prevention as well as long-term tissue compatibility and degradation.


Assuntos
Fístula Anastomótica , Adesivo Tecidual de Fibrina , Anastomose Cirúrgica , Animais , Estudos de Viabilidade , Poliuretanos , Suínos
12.
Macromol Biosci ; 22(4): e2100451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080346

RESUMO

In microsurgical anastomosis, non-synthetic fibrin-based adhesives have predominantly shown superior properties to synthetic cyanoacrylates, but they have hardly any clinical application. This study aims to investigate the local and systemic effects of synthetically produced biodegradable adhesive VIVO when used in microsurgical anastomosis. VIVO is used in two different anastomosis procedures in the common carotid artery in a rat model: VIVO in addition to a temporary catheter (VIVO TC) and VIVO with a custom-shaped memory nitinol stent (VIVO SM). Conventionally sutured anastomoses serve as controls (C). Tissue response is assessed by in vivo fluorescence imaging and histological examination. The systemic effects of biodegradation are measured using hematologic parameters and serum levels of transaminase activity and lactate dehydrogenase. Finally, the degree of local adhesion of the different anastomotic procedures is evaluated. Fluorescence imaging shows reduced inflammatory blood flow in the VIVO TC group. Histological analysis of the anastomosed vessels also reveals significantly more inflammation in C than in the two adhesive groups. The severity of VIVO adhesions proves acceptable, and no histotoxic effects of VIVO are detected. The data demonstrate that the synthetic tissue adhesive VIVO is a reliable and-compared to sutures-tissue-friendly adhesive for microsurgical anastomoses.


Assuntos
Adesivos Teciduais , Adesivos , Anastomose Cirúrgica/métodos , Animais , Artérias Carótidas/cirurgia , Adesivo Tecidual de Fibrina , Microcirurgia/métodos , Poliuretanos/farmacologia , Ratos
13.
Biotechnol Bioeng ; 108(3): 694-703, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21246513

RESUMO

The potential of novel functional star-shaped poly(ε-caprolactone)s of controlled molecular weight and low molecular weight distribution bearing acrylate end groups as material for biomedical applications was demonstrated in this study. The polymers were functionalized via Michael-type addition of amino acid esters containing amino or thiol groups showing the potential for immobilization of biomolecules. Furthermore, scaffolds of different geometries were prepared by uniaxial freezing of polymer solutions followed by freeze drying. Different solvents and polymer concentrations were investigated, resulting in scaffolds with porosities between 76 and 96%. Mechanical properties of the scaffolds were investigated and the morphology was determined via scanning electron microscopy. Scaffolds with interconnected channels were prepared using benzene, 1,2-dichloroethane or dioxane as solvent. The tubular longitudinal pores in honeycomb arrangement extend throughout the full extent of the scaffolds (typical pore sizes: 20-100 µm).


Assuntos
Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Técnicas de Cultura de Células , Fibroblastos/fisiologia , Camundongos , Microscopia Eletrônica de Varredura , Peso Molecular , Porosidade
14.
Mater Sci Eng C Mater Biol Appl ; 127: 112196, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225849

RESUMO

Textile engineering can offer a multi-scale toolbox via various fiber or textile fabrication methods to obtain woven or nonwoven aerogels with different structural and mechanical properties to overcome the current limitations of polysaccharide-based aerogels, such as poor mechanical properties and undeveloped shaping techniques. Hereby, a high viscous solution of microcrystalline cellulose and zinc chloride hydrate was wet spun to produce mono and multi-filament alcogel microfibers. Subsequently, cellulose aerogel fibers (CAF) were produced and impregnated with model drugs using supercritical CO2 processes. Fibers were characterized in terms of morphology and textural properties, thermal stability, mechanical properties, and in vitro biological and drug release assessments. Loaded and non-loaded CAFs proved to have a macro-porous outer shell and a nano-porous inner core with interconnected pore structure and a specific area in the range of 100-180 m2/g. The CAFs with larger diameter (d ~ 235 µm) were able to form knitted mesh while lower diameter fibers (d ~ 70 µm) formed needle punched nonwoven textiles. Humidity and water uptake assessments indicated that the fibrous structures were highly moisture absorbable and non-toxic with immediate drug release profiles due to the highly open interconnected porous structure of the fibers. Finally, CAFs are propitious to be further developed for biomedical applications such as drug delivery and wound care.


Assuntos
Celulose , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Géis , Porosidade
15.
J Biomed Mater Res B Appl Biomater ; 109(5): 693-702, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098257

RESUMO

Surgical sutures are indispensable for a vast majority of operative procedures. An ideal suture is characterized by high tissue compliance without cutting into the mended tissue and optimal biocompatibility. Therefore, we assessed these mechanical and biological properties for novel elastic thermoplastic polyurethane (TPU) and cross-sectional modified "snowflake" sutures. Circular and "snowflake"-shaped TPU threads were manufactured and compared to similar surface modified polyvinylidene fluoride (PVDF) sutures. Regular PVDF sutures were used as the control group. Single-axis tensile test with and without gelatinous tissue surrogates were performed to evaluate the suture incision into the specimens. Biocompatibility was evaluated by subcutaneous implantation (n = 18) in rats for 7 and 21 days. Histology and immunohistology was conducted for assessment of the foreign body reaction. Regular and modified TPU threads showed a significant reduction of incision into the tissue surrogates compared to the control. Both TPU sutures and the modified PVDF sutures achieved comparable biocompatibility versus regular PVDF threads. Detailed histology revealed novel tissue integration into the notches of the surface modified sutures, we termed this newly shaped granuloma "intrafilamentous" granuloma. Elastic TPU threads showed a significant reduction of tissue surrogate incision and suture tension loss. Biocompatibility did not significantly differ from standard PVDF. Histology demonstrated tissue ingrowth following the surface modification of the suture referred to as "intrafilamentous" granuloma. Further in vivo studies are required to illuminate the exact potential of the new sutures to optimize intestinal anastomosis.


Assuntos
Materiais Biocompatíveis/química , Elasticidade , Suturas , Uretana/química , Animais , Desenho de Equipamento , Feminino , Polímeros de Fluorcarboneto/química , Reação a Corpo Estranho , Granuloma/patologia , Técnicas In Vitro , Teste de Materiais , Polímeros/química , Polivinil/química , Ratos , Ratos Sprague-Dawley , Temperatura , Resistência à Tração
16.
J Tissue Eng Regen Med ; 14(9): 1281-1295, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656942

RESUMO

The development of tissue-engineered vascular grafts (TEVGs) for paediatric applications must consider unique factors associated with this patient cohort. Although the increased elastogenic potential of neonatal cells offers an opportunity to overcome the long-standing challenge of in vitro elastogenesis, neonatal patients have a lower tolerance for autologous tissue harvest and require grafts that exhibit growth potential. The purpose of this study was to apply a multipronged strategy to promote elastogenesis in conjunction with umbilical cord-derived materials in the production of a functional paediatric TEVG. An initial proof-of-concept study was performed to extract fibrinogen from human umbilical cord blood samples and, through electrospinning, to produce a nanofibrous fibrinogen scaffold. This scaffold was seeded with human umbilical artery-derived smooth muscle cells (hUASMCs), and neotissue formation within the scaffold was examined using immunofluorescence microscopy. Subsequently, a polycaprolactone-reinforced porcine blood-derived fibrinogen scaffold (isolated using the same protocol as cord blood fibrinogen) was used to develop a rolled-sheet graft that employed topographical and biochemical guidance cues to promote elastogenesis and cellular orientation. This approach resulted in a TEVG with robust mechanical properties and biomimetic arrangement of extracellular matrix (ECM) with rich expression of elastic fibre-related proteins. The results of this study hold promise for further development of paediatric TEVGs and the exploration of the effects of scaffold microstructure and nanostructure on vascular cell function and ECM production.


Assuntos
Prótese Vascular , Fibrinogênio/química , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Criança , Elastina/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Miócitos de Músculo Liso/citologia , Nanofibras/química , Nanofibras/ultraestrutura , Suínos , Fator de Crescimento Transformador beta1/farmacologia , Cordão Umbilical/citologia
17.
Ann Biomed Eng ; 48(2): 747-756, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31754901

RESUMO

In the concept of a biohybrid lung, endothelial cells seeded on gas exchange membranes form a non-thrombogenic an anti-inflammatory surface to overcome the lacking hemocompatibility of today's oxygenators during extracorporeal membrane oxygenation. To evaluate this concept, the long-term stability and gas exchange performance of endothelialized RGD-conjugated polydimethylsiloxane (RGD-PDMS) membranes was evaluated. Human umbilical vein endothelial cells (ECs) were cultured on RGD-PDMS in a model system under physiological wall shear stress (WSS) of 0.5 Pa for up to 33 days. Gas exchange performance was tested with three biological replicates under elevated WSS of 2.5 Pa using porcine blood adjusted to venous values following ISO 7199 and blood gas analysis. EC morphology was assessed by immunocytochemistry (n = 3). RGD-PDMS promoted endothelialization and stability of endothelialized membranes was shown for at least 33 days and for a maximal WSS of 2.5 Pa. Short-term exposure to porcine blood did not affect EC integrity. The gas transfer tests provided evidence for the oxygenation and decarboxylation of the blood across endothelialized membranes with a decrease of transfer rates over time that needs to be addressed in further studies with larger sample sizes. Our results demonstrate the general suitability of RGD-PDMS for biohybrid lung applications, which might enable long-term support of patients with chronic lung failure in the future.


Assuntos
Oxigenação por Membrana Extracorpórea , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pulmão , Membranas Artificiais , Consumo de Oxigênio , Oxigênio/metabolismo , Dimetilpolisiloxanos , Humanos
18.
Tissue Eng Part B Rev ; 25(2): 135-151, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30311858

RESUMO

IMPACT STATEMENT: The use of bio-based materials (i.e., biologically derived materials that have either a biological origin, including engineered tissues, or a bio-inspired chemical composition) offers the potential to obtain covered stents (CS) with superior performance with respect to the currently available ones, which employ synthetic materials. This will advance and expand the clinical applicability of CS not only in the cardiovascular field but also for the treatment of other target areas such as segments of the respiratory, gastrointestinal, biliary, and urinary tracts.


Assuntos
Materiais Revestidos Biocompatíveis/química , Stents , Engenharia Tecidual/métodos , Humanos , Membranas
19.
Comput Methods Biomech Biomed Engin ; 22(16): 1334-1344, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31502888

RESUMO

Braided stents are associated with a number of complications in vivo. Accurate computational modelling of these devices is essential for the design and development of the next generation of these stents. In this study, two commonly utilised methods of computationally modelling filament interaction in braided stents are investigated: the join method and the weave method. Three different braided stent designs are experimentally tested and computationally modelled in both radial and v-block configurations. The results of the study indicate that while both methods are capable of capturing braided stent performance to some degree, the weave method is much more robust.


Assuntos
Simulação por Computador , Modelos Teóricos , Stents , Ligas/química , Fenômenos Biomecânicos , Análise de Elementos Finitos , Estresse Mecânico
20.
Ann Biomed Eng ; 47(8): 1738-1747, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31044340

RESUMO

Lung cancer patients often suffer from severe airway stenosis, the symptoms of which can be relieved by the implantation of stents. Different respiratory stents are commercially available, but the impact of their mechanical performance on tissue responses is not well understood. Two novel laser-cut and hand-braided nitinol stents, partially covered with polycarbonate urethane, were bench tested and implanted in Rhön sheep for 6 weeks. Bench testing highlighted differences in mechanical behavior: the laser-cut stent showed little foreshortening when crimped to a target diameter of 7.5 mm, whereas the braided stent elongated by more than 50%. Testing also revealed that the laser-cut stent generally exerted higher radial resistive and chronic outward forces than the braided stent, but the latter produced significantly higher radial resistive forces at diameters below 9 mm. No migration was observed for either stent type in vivo. In terms of granulation, most stents exerted a low to medium tissue response with only minimal formation of granulation tissue. We have developed a mechanical and in vivo framework to compare the behavior of different stent designs in a large animal model, providing data, which may be employed to improve current stent designs and to achieve better treatment options for lung cancer patients.


Assuntos
Desenho de Prótese , Stents , Ligas , Animais , Feminino , Lasers , Teste de Materiais , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA