Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Med Chem ; 49(1): 349-57, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16392819

RESUMO

A novel set of dialkynoyl analogues of the cationic, gene delivery lipid DOTAP (1) was synthesized. Structure-activity studies demonstrate that replacement of the cis-double bonds of DOTAP with triple bonds in varying positions alters both the physical properties of the resultant cationic liposome-DNA complexes and their biological functionalities, both in vitro and in vivo. Particularly, in vivo studies demonstrate that pDNA transfection of mouse lung endothelial cells with lead analogue DS(14-yne)TAP (4):cholesterol lipoplexes exhibits double the transfection level with less associated toxicity relative to the well-established DOTAP:cholesterol system. In fact, 4:cholesterol delivers up to 3 times the dose of pDNA in mice than can be tolerated by DOTAP, leading to nearly 3 times greater marker-gene expression. X-ray diffraction studies suggest that lipoplexes containing analogue 4 display increased stability at physiological temperatures. Our results thus suggest that analogue 4 is a potentially strong candidate for the gene therapy of lung tumors.


Assuntos
DNA/genética , DNA/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Técnicas de Transferência de Genes , Pulmão/citologia , Compostos de Amônio Quaternário/farmacologia , Animais , Células COS , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Colesterol/farmacologia , DNA/efeitos dos fármacos , Células Endoteliais/química , Células Endoteliais/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/síntese química , Ácidos Graxos Monoinsaturados/química , Feminino , Genes Reporter , Células HeLa , Humanos , Técnicas In Vitro , Lipossomos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Relação Estrutura-Atividade , Difração de Raios X
2.
J Control Release ; 143(2): 222-32, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-19969034

RESUMO

We report the syntheses of novel cationic lipids comprised of cholesteryl-moieties linked to guanidinium functional groups, and also cationic lipids comprising a dialkylglycylamide moiety conjugated with a polyamine or a guanidinium functional group. In plasmid DNA (pDNA) transfection studies, these cationic lipids were formulated into cationic liposomes with the neutral co-lipid dioleoyl-L-alpha-phosphatidylethanolamine (DOPE) or with a recently reported neutral lipophosphoramidate derivative of histamine (MM27). We observe that cationic liposomes prepared from the cationic lipid N',N'-dioctadecyl-N-4,8-diaza-10-aminodecanoylglycine amide (DODAG) and DOPE frequently mediate the highest levels of transfection in vitro in all three different cell lines studied (OVCAR-3, IGROV-1 and HeLa) both in the presence or absence of serum. In addition, in vitro cellular toxicity was found to be minimal. Alternatively, we observe that DODAG alone forms lipoplex nanoparticles with small interfering RNA (siRNA) that are able to mediate the functional delivery of two previously validated anti-hepatitis B virus (HBV)--siRNAs to murine liver in vivo with minimal observable liver toxicity and immune stimulation. Specific knock-down of HBV infection parameters (virion and hepatic mRNA levels) is observed that is at least equivalent to the impact of extensive treatment with lamivudine (a licensed antiviral drug).


Assuntos
DNA/administração & dosagem , Dipeptídeos/química , Plasmídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Transfecção , Animais , Cátions/química , Linhagem Celular , Sobrevivência Celular , Vírus da Hepatite B/genética , Humanos , Lipossomos/química , Camundongos , Camundongos Transgênicos , Nanopartículas/química , RNA Interferente Pequeno/genética
3.
Mol Pharm ; 6(3): 706-17, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19159285

RESUMO

Harnessing RNA interference (RNAi) to inhibit hepatitis B virus (HBV) gene expression has promising application to therapy. Here we describe a new hepatotropic nontoxic lipid-based vector system that is used to deliver chemically unmodified small interfering RNA (siRNA) sequences to the liver. Anti HBV formulations were generated by condensation of siRNA (A component) with cationic liposomes (B component) to form AB core particles. These core particles incorporate an aminoxy cholesteryl lipid for convenient surface postcoupling of polyethylene glycol (PEG; C component, stealth/biocompatibility polymer) to give triggered PEGylated siRNA-nanoparticles (also known as siRNA-ABC nanoparticles) with uniform small sizes of 80-100 nm in diameter. The oxime linkage that results from PEG coupling is pH sensitive and was included to facilitate acidic pH-triggered release of nucleic acids from endosomes. Nanoparticle-mediated siRNA delivery results in HBV replication knockdown in cell culture and in murine hydrodynamic injection models in vivo. Furthermore repeated systemic administration of triggered PEGylated siRNA-nanoparticles to HBV transgenic mice results in the suppression of markers of HBV replication by up to 3-fold relative to controls over a 28 day period. This compares favorably to silencing effects seen during lamivudine treatment. Collectively these observations indicate that our PEGylated siRNA-nanoparticles may have valuable applications in RNAi-based HBV therapy.


Assuntos
Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Nanopartículas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/fisiologia , Replicação Viral/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Injeções Intravenosas , Lipossomos/química , Camundongos , Estrutura Molecular , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Replicação Viral/genética
4.
Bioconjug Chem ; 19(1): 118-29, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17985841

RESUMO

A novel bimodal fluorescent and paramagnetic liposome is described for cellular labeling. In this study, we show the synthesis of a novel gadolinium lipid, Gd.DOTA.DSA, designed for liposomal cell labeling and tumor imaging. Liposome formulations consisting of this lipid were optimized in order to allow for maximum cellular entry, and the optimized formulation was used to label HeLa cells in vitro. The efficiency of this novel bimodal Gd-liposome formulation for cell labeling was demonstrated using both fluorescence microscopy and magnetic resonance imaging (MRI). The uptake of Gd-liposomes into cells induced a marked reduction in their MRI T 1 relaxation times. Fluorescence microscopy provided concomitant proof of uptake and revealed liposome internalization into the cell cytosol. The optimized formulation was also found to exhibit minimal cytotoxicity and was shown to have capacity for plasmid DNA (pDNA) transfection. A further second novel neutral bimodal Gd-liposome is described for the labeling of xenograft tumors in vivo utilizing the enhanced permeation and retention effect (EPR). Balb/c nude mice were inoculated with IGROV-1 cells, and the resulting tumor was imaged by MRI using these in vivo Gd-liposomes formulated with low charge and a poly(ethylene glycol) (PEG) calyx for long systemic circulation. These Gd-liposomes which were less than 100 nm in size were shown to accumulate in tumor tissue by MRI, and this was also verified by fluorescence microscopy of histology samples. Our in vivo tumor imaging results demonstrate the effectiveness of MRI to observe passive targeting of long-term circulating liposomes to tumors in real time, and allow for MRI directed therapy, wherein the delivery of therapeutic genes and drugs to tumor sites can be monitored while therapeutic effects on tumor mass and/or size may be simultaneously observed, quantitated, and correlated.


Assuntos
Lipossomos/metabolismo , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico , Morte Celular/efeitos dos fármacos , Células HeLa , Compostos Heterocíclicos/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Ligantes , Lipídeos/química , Lipossomos/química , Lipossomos/toxicidade , Microscopia de Fluorescência , Neoplasias/patologia , Compostos Organometálicos/metabolismo , Espectrofotometria Atômica , Transfecção
5.
Org Biomol Chem ; 4(2): 196-9, 2006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-16391759

RESUMO

Positively-charged gene delivery agents, such as cationic liposomes, typically prepared by mixing a cationic lipid and a neutral lipid in a 1 : 1 molar ratio, exhibit a fundamental flaw: on the one hand, the charge encourages cell uptake; on the other hand, the charge leads to aggregation in vivo with anionic serum components. We herein report a more phase-stable analogue of the zwitterionic and fusogenic lipid DOPE that allows for the reduction of the cationic lipid component of the liposome from 50 to 9 mol% with almost no apparent loss in transfection activity. This reduction in charge may induce important in vivo stability whilst still imparting high cell uptake and transgene expression.


Assuntos
Lipossomos/química , Fosfatidiletanolaminas/química , Transfecção/métodos , Cátions , Estabilidade de Medicamentos , Terapia Genética/métodos , Lipossomos/farmacocinética , Fosfatidiletanolaminas/genética , Transfecção/normas
6.
Org Biomol Chem ; 4(18): 3489-97, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17036144

RESUMO

Cellular entry of imaging probes, such as contrast agents for magnetic resonance imaging (MRI), is a key requirement for many molecular imaging studies, particularly imaging intracellular events and cell tracking. Here, we describe the successful development and in vitro analysis of MAGfect, a novel liposome formulation containing a lipidic gadolinium contrast agent for MRI, Gd-DOTA-Chol , designed to enter and label cells. Liposome formulation and cell incubation time were optimised for maximum cellular uptake of the imaging probe in a variety of cell lines. MRI analysis of cells incubated with MAGfect showed them to be highly MRI active. This formulation was examined further for cytotoxicity, cell viability and mechanism of cell labelling. One of the key advantages of using MAGfect as a labelling vehicle arises from its potential for additional functions, such as concomitant drug or gene delivery and fluorescent labelling. The gadolinium liposome was found to be an effective vehicle for transport of plasmid DNA (pDNA) into cells and expression levels were comparable to the commercial transfection agent Trojene.


Assuntos
Células/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Coloração e Rotulagem/métodos , Células/efeitos dos fármacos , DNA/metabolismo , Gadolínio/metabolismo , Células HeLa , Compostos Heterocíclicos/química , Humanos , Lipídeos , Compostos Organometálicos/química , Plasmídeos/metabolismo , Transfecção
7.
Chembiochem ; 6(7): 1212-23, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15937988

RESUMO

One of the main problems facing gene therapy is the ability to target the delivery of DNA to specific cells of choice. Recently, we developed a synthetic nonviral vector platform system known as LMD (liposome:mu:DNA) that was designed for further modular upgrading with tool-kits of chemical components. First-generation LMD systems were prepared from DC-Chol/DOPE cationic liposomes (DC-Chol=3beta-[N-(N',N'-dimethylaminoethane)carbamoyl] cholesterol, DOPE=dioleoyl-L-alpha-phosphatidylethanolamine), mu peptide from the adenovirus core and plasmid DNA (pDNA). Here we report attempts to realise peptide-targeted gene delivery that build upon the LMD platform. Our strategy was to prepare novel lipopeptides with a lipid moiety designed to insert into the outer lipid bilayer of LMD particles whilst simultaneously presenting a peptide moiety for cell-surface receptor binding. One main functional peptide sequence was selected (PLAEIDGIELA; tenascin peptide sequence) known to target alpha(9)beta(1)-integrin proteins predominant on upper-airway epithelial cells. This sequence was investigated along with a corresponding control sequence. The syntheses of two classes (A and B) of lipopeptides are reported; the syntheses of class A lipopeptides requires a modification of Mitsunobu chemistry that could be of general utility to facilitate Mitsunobu reactions in other diverse systems. "Targeted" LMD and LD transfections with class A or B lipopeptides exhibit nonspecific peptide enhancements (up to one order of magnitude) over nonlipopeptide control transfections but few specific effects. Specific targeting effects can be seen if the overall LMD or LD particle cationic charge is lowered, but nonspecific effects are never eliminated. Whilst promising, these data now highlight the need for in vivo data and even a new modular, aqueous chemistry for the controlled adaptation of LMD particles in buffer in order for successful peptide-targeted, synthetic, nonviral gene delivery to be realised.


Assuntos
DNA/administração & dosagem , Integrinas/química , Lipoproteínas/síntese química , Transfecção/métodos , Animais , Ligação Competitiva , DNA/genética , Integrinas/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipoproteínas/metabolismo , Lipossomos/síntese química , Lipossomos/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Tenascina/química
8.
Biochemistry ; 42(20): 6067-77, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12755608

RESUMO

The DNA complexation and condensation properties of two established cationic liposome formulations, CDAN/DOPE (50:50, m/m; Trojene) and DC-Chol/DOPE (60:40, m/m), were investigated by using a combination of isothermal titration calorimetry (ITC), circular dichroism (CD), photon correlation spectroscopy (PCS), and turbidity assays. Plasmid DNA (7528 bp) was titrated with extruded liposomes (90 +/- 15 nm) and a thermodynamic profile established. ITC data revealed that the two liposome formulations differ substantially in their DNA complexation characteristics. Equilibrium dissociation constants for CDAN/DOPE (K(d) = 19 +/- 3 microM) and DC-Chol/DOPE liposomes (K(d) = 2 +/- 0.5 microM) were obtained by fitting the experimental data in a one-site binding model. Both CDAN/DOPE and DC-Chol/DOPE binding events take place with a negative binding enthalpy (DeltaH degrees = -0.5 and -1.7 kcal/mol, respectively) and increasing system entropy (TDeltaS = 6 +/- 0.3 and 6.2 +/- 0.3 kcal/mol, respectively). Interestingly, CDAN/DOPE liposomes undergo substantial rehydration and protonation prior to complexation with pDNA, which is observed as two discrete exothermic signals during titration. No such biphasic effects are seen with respect to the binding between DC-Chol/DOPE and pDNA that appears to be otherwise instantaneous with no rehydration effects. The rehydration and protonation characteristics of CDAN/DOPE liposomes in comparison with those of DC-Chol/DOPE cationic liposomes are confirmed by ITC; CDAN/DOPE liposomes have strongly exothermic dilution characteristics and DC-Chol/DOPE liposomes only mildly endothermic characteristics. Furthermore, analysis of cationic liposome-pDNA binding by CD spectroscopy reveals that CDAN/DOPE-pDNA lipoplexes are more structurally fluid than DC-Chol/DOPE-pDNA lipoplexes. CDAN/DOPE liposomes induced considerable fluctuation in the DNA structure for at least 60 min, whereas liposomes obtained from DC-Chol/DOPE lack the same effect on the DNA structure. Turbidity studies show that DC-Chol/DOPE lipoplexes exhibit greater resistance to serum than CDAN/DOPE lipoplexes, which showed substantial precipitation after incubation for 100 min with serum. Transfection studies on HeLa and Panc-1 cells reveal that CDAN/DOPE lipoplexes are superior in efficacy to DC-Chol/DOPE lipoplexes. CDAN/DOPE liposomes tend to transfect best in normal growth medium (including 10% serum and antibiotics), whereas DC-Chol/DOPE lipoplexes transfect best under serum free transfection conditions.


Assuntos
Colesterol/análogos & derivados , Colesterol/química , Lipossomos/química , Fosfatidiletanolaminas/química , Fenômenos Biofísicos , Biofísica , Calorimetria , Dicroísmo Circular , Células HeLa , Humanos , Técnicas In Vitro , Nefelometria e Turbidimetria , Ressonância Magnética Nuclear Biomolecular , Plasmídeos/química , Plasmídeos/genética , Análise Espectral , Termodinâmica , Transfecção/métodos
9.
Bioconjug Chem ; 14(5): 884-98, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-13129391

RESUMO

Novel carbohydrate-based agents for the stabilization of ternary liposome:mu:DNA (LMD) nonviral vector systems are described. LMD vector systems comprise plasmid DNA (pDNA; D,7.5 kb) expressing a reporter gene (in this instance beta-galactosidase expressing gene) that is precondensed with the adenoviral core peptide mu (mu, M; MRRAHHRRRRASHRRMRGG) and then further packaged by means of DC-Chol:DOPE (3:2; m/m) cationic liposomes. Final optimized lipid:mu:pDNA ratio is typically 12:0.6:1 (w/w/w). We report the synthesis of a series of nine neoglycolipids prepared by coupling completely unprotected sugar monomers or oligomers (mannose, glucose, galactose, glucuronic acid, maltose, lactose, maltotriose, maltotetraose, and maltoheptaose) through their reducing-residue termini to an aminoxy-functionalized cholesterol-based lipid. Characterization of these novel neoglycolipids by (1)H NMR reveals that the coupling reaction has a major configurational preference for the beta-anomer. Unusually, even mannose coupling results in a neoglycolipid product with a predominantly beta-anomeric conformation (>85%). Formulation of neoglycolipids into LMD vector systems by incubation of LMD particles with neoglycolipid micelles results in the formation of a range of potential stabilized-LMD (sLMD) vector systems. Those potential sLMD systems prepared with longer chain neoglycolipids are found to have enhanced stabilities, with respect to aggregation in high ionic strength buffers, and enhanced transfection efficacies in comparison to the transfection properties of the naked first generation LMD vector system (i.e., gene delivery and expression). By contrast, when LMD vector systems are incubated with poly(ethylene glycol) DSPE-PEG micelles, resulting PEG-LMD vector systems are very stable with respect to colloidal instablility and aggregation in high ionic strength buffers and in serum, but are completely refractory to transfection. These data suggest that oligosaccharides could represent an alternative to PEG as a stealth polymer able to stabilize synthetic nonviral vector systems in some fluids but without impairing transfection efficiency. Furthermore, sLMD systems prepared with longer chain neoglycolipids appear to have sufficient useful characteristics to form the basis of viable second-generation LMD vector systems after further development.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Glicolipídeos/administração & dosagem , Glicolipídeos/síntese química , Lipossomos/administração & dosagem , Lipossomos/síntese química , Química Farmacêutica , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA