Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 95(5): 446-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25190190

RESUMO

The influence of the macroscale material properties of bone on its mechanical competence has been extensively investigated, but less is known about possible contributions from bone's nanoscale material properties. These nanoscale properties, particularly the collagen network and the size and shape of hydroxyapatite mineral crystals, may be affected by aging, mechanical loading, and diseases including osteoporosis. Here, changes to the collagen and mineral properties of cortical bone induced by osteoporosis and subsequent pharmaceutical treatments were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) microbeam mapping. Adult rats (6 months old) were ovariectomized and treated with alendronate, parathyroid hormone, or sodium fluoride, and compared to untreated ovariectomized and age-matched controls. Scattering data from tibial cortical bone showed that osteoporosis increased collagen alignment in existing intracortical bone, while this effect was mitigated in the alendronate and sodium fluoride groups though by different mechanisms. Further, mineral crystal lengths in newly formed cortical bone were smaller in animals with osteoporosis, but existing cortical bone was not altered. Subsequent treatment with alendronate mitigated changes in crystal lengths. Together, these results suggest that osteoporosis may alter the collagen alignment and mineral geometry in bone formed before and after the onset of this disease, and that osteoporosis treatments may differentially rescue these changes.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/ultraestrutura , Colágeno/ultraestrutura , Minerais , Osteoporose Pós-Menopausa/patologia , Alendronato/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Colágeno/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Minerais/química , Ovariectomia , Ratos , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Fluoreto de Sódio/farmacologia , Difração de Raios X
2.
Am J Phys Anthropol ; 151(3): 356-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23794331

RESUMO

Inference of feeding adaptation in extinct species is challenging, and reconstructions of the paleobiology of our ancestors have utilized an array of analytical approaches. Comparative anatomy and finite element analysis assist in bracketing the range of capabilities in taxa, while microwear and isotopic analyses give glimpses of individual behavior in the past. These myriad approaches have limitations, but each contributes incrementally toward the recognition of adaptation in the hominin fossil record. Microwear and stable isotope analysis together suggest that australopiths are not united by a single, increasingly specialized dietary adaptation. Their traditional (i.e., morphological) characterization as "nutcrackers" may only apply to a single taxon, Paranthropus robustus. These inferences can be rejected if interpretation of microwear and isotopic data can be shown to be misguided or altogether erroneous. Alternatively, if these sources of inference are valid, it merely indicates that there are phylogenetic and developmental constraints on morphology. Inherently, finite element analysis is limited in its ability to identify adaptation in paleobiological contexts. Its application to the hominin fossil record to date demonstrates only that under similar loading conditions, the form of the stress field in the australopith facial skeleton differs from that in living primates. This observation, by itself, does not reveal feeding adaptation. Ontogenetic studies indicate that functional and evolutionary adaptation need not be conceptually isolated phenomena. Such a perspective helps to inject consideration of mechanobiological principles of bone formation into paleontological inferences. Finite element analysis must employ such principles to become an effective research tool in this context.


Assuntos
Adaptação Biológica , Antropologia/métodos , Evolução Biológica , Dieta , Hominidae/anatomia & histologia , Animais , Fenômenos Biomecânicos , Isótopos de Carbono/análise , Esmalte Dentário/anatomia & histologia , Comportamento Alimentar , Análise de Elementos Finitos , Hominidae/fisiologia , Arcada Osseodentária/anatomia & histologia , Crânio/anatomia & histologia
3.
J Hum Evol ; 58(4): 293-308, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20227747

RESUMO

Finite element analysis (FEA) is a potentially powerful tool by which the mechanical behaviors of different skeletal and dental designs can be investigated, and, as such, has become increasingly popular for biomechanical modeling and inferring the behavior of extinct organisms. However, the use of FEA to extrapolate from characterization of the mechanical environment to questions of trophic or ecological adaptation in a fossil taxon is both challenging and perilous. Here, we consider the problems and prospects of FEA applications in paleoanthropology, and provide a critical examination of one such study of the trophic adaptations of Australopithecus africanus. This particular FEA is evaluated with regard to 1) the nature of the A. africanus cranial composite, 2) model validation, 3) decisions made with respect to model parameters, 4) adequacy of data presentation, and 5) interpretation of the results. Each suggests that the results reflect methodological decisions as much as any underlying biological significance. Notwithstanding these issues, this model yields predictions that follow from the posited emphasis on premolar use by A. africanus. These predictions are tested with data from the paleontological record, including a phylogenetically-informed consideration of relative premolar size, and postcanine microwear fabrics and antemortem enamel chipping. In each instance, the data fail to conform to predictions from the model. This model thus serves to emphasize the need for caution in the application of FEA in paleoanthropological enquiry. Theoretical models can be instrumental in the construction of testable hypotheses; but ultimately, the studies that serve to test these hypotheses - rather than data from the models - should remain the source of information pertaining to hominin paleobiology and evolution.


Assuntos
Dieta , Ossos Faciais/anatomia & histologia , Hominidae/anatomia & histologia , Paleodontologia , Paleontologia , Crânio/anatomia & histologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Dente Canino/anatomia & histologia , Análise de Elementos Finitos , Fósseis , História Antiga , Modelos Anatômicos , Dente Molar/anatomia & histologia , Filogenia
4.
J Biomed Mater Res A ; 107(6): 1143-1153, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30635968

RESUMO

This study investigates the mechanical properties and in vitro cytotoxicity of two-dimensional (2D) graphene oxide nanoribbons and nanoplatelets (GONRs and GONPs) reinforced porous polymeric nanocomposites. Highly porous poly(propylene fumarate) (PPF) nanocomposites were prepared by dispersing 0.2 wt % single- and multiwalled SONRs (SWGONRs and MWGONRs) and GONPs. The mechanical properties of scaffolds were characterized using compression testing and in vitro cytocompatibility was assessed using QuantiFlour assay for cellularity and PrestoBlue assay for cell viability. Immunofluorescence was used to assess collagen-I expression and deposition in the extracellular matrix. Porous PPF scaffolds were used as a baseline control and porous single and multiwalled carbon nanotubes (SWCNTs and MWCNTs) reinforced nanocomposites were used as positive controls. Results show that incorporation of 2D graphene nanomaterials leads to an increase in the mechanical properties of porous PPF nanocomposites with following the trend: MWGONRs > GONPs > SWGONRs > MWCNTs > SWCNTs > PPF control. MWGONRs showed the best enhancement of compressive mechanical properties with increases of up to 26% in compressive modulus (i.e., Young's modulus), ~60% in yield strength, and ~24% in the ultimate compressive strength. Addition of 2D nanomaterials did not alter the cytocompatibility of porous PPF nanocomposites. Furthermore, PPF nanocomposites reinforced with SWGONRs, MWGONRs, and GONPs show an improvement in the adsorption of collagen-I compared to PPF baseline control. The results of this study show that 2D graphene nanomaterial reinforced porous PPF nanocomposites possess superior mechanical properties, cytocompatibility, and increased protein adsorption. The favorable cytocompatibility results opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1143-1153, 2019.


Assuntos
Plásticos Biodegradáveis , Osso e Ossos/metabolismo , Grafite , Teste de Materiais , Nanocompostos/química , Engenharia Tecidual , Animais , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Osso e Ossos/citologia , Linhagem Celular , Grafite/química , Grafite/farmacologia , Camundongos , Porosidade
5.
Dose Response ; 16(3): 1559325818792112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30397398

RESUMO

Modalities that increase the rate of tooth movement have received considerable attention, but direct comparisons between devices are rare. Here, we contrasted 2 mechanical vibratory devices designed to directly transfer vibrations into alveolar bone as a means to influence bone remodeling. To this end, 3 cells types intimately involved in modulating tooth movements-osteoblasts, periodontal ligament fibroblasts, and osteoclasts-were subjected to in vitro vibrations at bout durations prescribed by the manufacturers. As quantified by an accelerometer, vibration frequency and peak accelerations were 400% and 70% greater in the VPro5 (Propel Orthodontics) than in the AcceleDent (OrthoAccel Technologies) device. Both devices caused increased cell proliferation and gene expression in osteoblasts and fibroblasts, but the response to VPro5 treatment was greater than for the AcceleDent. In contrast, the ability to increase osteoclast activity was device independent. These data present an important first step in determining how specific cell types important for facilitating tooth movement respond to different vibration profiles. The device that engendered a higher vibration frequency and larger acceleration (VPro5) was superior in stimulating osteoblast and fibroblast cell proliferation/gene expression, although the duration of each treatment bout was 75% shorter than for the AcceleDent.

6.
ASAIO J ; 59(3): 275-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23644615

RESUMO

Aortic stenosis is the most prevalent and life-threatening form of valvular heart disease. It is primarily treated via open-heart surgical valve replacement with either a tissue or a mechanical prosthetic heart valve (PHV), each prone to degradation and thrombosis, respectively. Polymeric PHVs may be optimized to eliminate these complications, and they may be more suitable for the new transcatheter aortic valve replacement procedure and in devices like the total artificial heart. However, the development of polymer PHVs has been hampered by persistent in vivo calcification, degradation, and thrombosis. To address these issues, we have developed a novel surgically implantable polymer PHV composed of a new thermoset polyolefin called cross-linked poly(styrene-block-isobutylene-block-styrene), or xSIBS, in which key parameters were optimized for superior functionality via our device thrombogenicity emulation methodology. In this parametric study, we compared our homogeneous optimized polcymer PHV to a prior composite polymer PHV and to a benchmark tissue valve. Our results show significantly improved hemodynamics and reduced thrombogenicity in the optimized polymer PHV compared to the other valves. These results indicate that our new design may not require anticoagulants and may be more durable than its predecessor, and validate the improvement, toward optimization, of this novel polymeric PHV design.


Assuntos
Estenose da Valva Aórtica/cirurgia , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas/efeitos adversos , Ativação Plaquetária/efeitos dos fármacos , Polímeros/uso terapêutico , Trombina/uso terapêutico , Valva Aórtica/cirurgia , Simulação por Computador , Implante de Prótese de Valva Cardíaca/métodos , Hemodinâmica , Humanos , Desenho de Prótese , Reprodutibilidade dos Testes
7.
PLoS One ; 2(7): e653, 2007 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-17653280

RESUMO

A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9) and normal age-matched control (n = 18) mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17%) and connectivity density (33%), and significantly smaller trabecular spacing (-6%) and structural model index (-11%). These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism.


Assuntos
Desenvolvimento Ósseo/fisiologia , Tíbia/anatomia & histologia , Envelhecimento/fisiologia , Animais , Peróxido de Benzoíla/farmacologia , Desenvolvimento Ósseo/efeitos dos fármacos , Reabsorção Óssea/induzido quimicamente , Diáfises/citologia , Diáfises/efeitos dos fármacos , Dibutilftalato/farmacologia , Feminino , Lateralidade Funcional , Membro Posterior/fisiologia , Metilmetacrilato/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Oscilometria , Tíbia/citologia , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tomografia Computadorizada por Raios X , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA