Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 259: 373-380, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29579689

RESUMO

A process of isobutanol production from sugarcane bagasse hydrolysates in Enterobacter aerogenes was developed here with a pervaporation-integrated procedure. Isobutanol pathway was overexpressed in a mutant strain with eliminated byproduct-forming enzymes (LdhA, BudA, and PflB). A glucose-and-xylose-coconsuming ptsG mutant was constructed for effective utilization of lignocellulosic biomass. Toxic effects of isobutanol were alleviated by in situ recovery via a pervaporation procedure. Compared to single-batch fermentation, cell growth and isobutanol titer were improved by 60% and 100%, respectively, in the pervaporation-integrated fermentation process. A lab-made cross-linked polydimethylsiloxane membrane was cast on polyvinylidene fluoride and used in the pervaporation process. The membrane-penetrating condensate contained 55-226 g m-2 h-1 isobutanol with 6-25 g L-1 ethanol after separation. This study offers improved fermentative production of isobutanol from lignocellulosic biomass with a pervaporation procedure.


Assuntos
Reatores Biológicos , Butanóis , Saccharum , Celulose , Enterobacter aerogenes , Etanol , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA