Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(23): 9416-9423, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38809415

RESUMO

A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.


Assuntos
Ciclídeos , Microplásticos , Muco , Polipropilenos , Animais , Microplásticos/análise , Polipropilenos/química , Ciclídeos/metabolismo , Muco/metabolismo , Muco/química , Epiderme/metabolismo , Epiderme/química , Espectrometria de Massas por Ionização por Electrospray
2.
Carbohydr Polym ; 299: 120191, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876765

RESUMO

Glucuronyl 5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) into L-iduronic acid (IdoA) units, through a mechanism involving reversible abstraction of a proton at C5 of hexuronic acid residues. Incubations of a [4GlcAß1-4GlcNSO3α1-]n precursor substrate with recombinant enzymes in a D2O/H2O medium enabled an isotope exchange approach to the assessment of functional interactions of Hsepi with hexuronyl 2-O-sulfotransferase (Hs2st) and glucosaminyl 6-O-sulfotransferase (Hs6st), both involved in the final polymer-modification steps. Enzyme complexes were supported by computational modeling and homogeneous time resolved fluorescence. GlcA and IdoA D/H ratios related to product composition revealed kinetic isotope effects that were interpreted in terms of efficiency of the coupled epimerase and sulfotransferase reactions. Evidence for a functional Hsepi/Hs6st complex was provided by selective incorporation of D atoms into GlcA units adjacent to 6-O-sulfated glucosamine residues. The inability to achieve simultaneous 2-O- and 6-O-sulfation in vitro supported topologically separated reactions in the cell. These findings provide novel insight into the roles of enzyme interactions in heparan sulfate biosynthesis.


Assuntos
Ácido Idurônico , Complexos Multienzimáticos , Ácido Glucurônico , Polímeros , Prótons , Racemases e Epimerases , Sulfotransferases , Heparitina Sulfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA