Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 134(49): 20139-45, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23181614

RESUMO

A facile synthetic strategy for introducing catecholic moieties into polymeric materials based on a readily available precursor (eugenol) and efficient chemistries [tris(pentafluorophenyl)borane-catalyzed silation and thiol-ene coupling] is reported. Silyl protection is shown to be critical for the oxidative stability of catecholic moieties during synthesis and processing, which allows functionalized polysiloxane derivatives to be fabricated into 3D microstructures as well as 2D patterned surfaces. Deprotection gives stable catechol surfaces whose adhesion to a variety of oxide surfaces can be precisely tuned by the level of catechol incorporation. The advantage of silyl protection for catechol-functionalized polysiloxanes is demonstrated and represents a promising and versatile new platform for underwater surface treatments.


Assuntos
Catecóis/química , Óxidos/química , Siloxanas/química , Propriedades de Superfície , Molhabilidade
2.
Biomacromolecules ; 13(12): 4089-97, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23140570

RESUMO

Hybrid dendritic-linear block copolymers based on a 4-arm poly(ethylene glycol) (PEG) core were synthesized using an accelerated AB2/CD2 dendritic growth approach through orthogonal amine/epoxy and thiol-yne chemistries. The biological activity of these 4-arm and the corresponding 2-arm hybrid dendrimers revealed an enhanced, dendritic effect with an exponential increase in cell internalization concomitant with increasing amine end groups and low cytotoxicity. Furthermore, the ability of these hybrid dendrimers to induce endosomal escape combined with their facile and efficient synthesis makes them attractive platforms for gene transfection. The 4-arm-based dendrimer showed significantly improved DNA binding and gene transfection capabilities in comparison with the 2-arm derivative. These results combined with the MD simulation indicate a significant effect of both the topology of the PEG core and the multivalency of these hybrid macromolecules on their DNA binding and delivery capablities.


Assuntos
Cátions/química , DNA/química , Dendrímeros/química , Polietilenoglicóis/química , Sobrevivência Celular , Dendrímeros/farmacocinética , Etídio/análise , Técnicas de Transferência de Genes , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Simulação de Dinâmica Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção
3.
Acta Biomater ; 103: 92-101, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811956

RESUMO

The critical problem associated with the underwater mussel adhesive catechol-based 3,4-dihydroxy-L-phenylalanine (DOPA) is its sensitivity to oxidation. To overcome this problem, mussels underwent etching in the presence of acidic pH conditions (<3.0), and thiol chemistry was used to control the propensity of DOPA for oxidation. Similar strategies deployed by mussels are also actively utilized in dental adhesives which undergo etching in the presence of phosphoric acid derivatives to maximize the bonding strength and adapt thiol chemistries to minimize shrinkage stress. In view of the similarities between dental and underwater mussel adhesives, we employ in this study the strategy of mussel adhesion-the combination of DOPA and thiol chemistry with acid etching-to one of the most critical issues in dental adhesives, namely, the dentin bonding with zirconia. As a result, the adhesion bonding between zirconia and dentin, one of the most elusive problems in dentistry, has improved compared to the commercially available adhesive resin formulation. In addition, in view of the similar human oral and mussel adhesive environments, our findings will considerably contribute to the translation of the adhesive system inspired by mussels. STATEMENT OF SIGNIFICANCE: Mussels are effectively operated by creating an acidic environment when adhering with 3,4-dihydroxy-l-phenylalanine (DOPA)-thiol redox chemistry for underwater bonding. Similarly, in dental adhesives, phosphoric acid-based etching is used for dentin-bonding materials. In view of the similarity between dental adhesives and underwater mussel adhesives, the combination of DOPA and thiol chemistry with acid etching can be used to overcome one of the most critical issues in dentin medical adhesives. The proposed adhesion method produces high adhesion strengths compared to those currently used in dentin and zirconia adhesives. Here, we extend and evaluate dentin and zirconia dental adhesives by mixing with mussel (DOPA)-thiol redox chemistry and acid etching.


Assuntos
Bivalves/fisiologia , Catecóis/farmacologia , Adesivos Dentinários/farmacologia , Compostos de Sulfidrila/farmacologia , Adesividade , Animais , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Fibroblastos/efeitos dos fármacos , Humanos , Ferro/química , Espectroscopia de Ressonância Magnética , Teste de Materiais , Cimentos de Resina/farmacologia , Zircônio/química
4.
ACS Nano ; 10(1): 930-7, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26695175

RESUMO

We describe robustly anchored triblock copolymers that adopt loop conformations on surfaces and endow them with unprecedented lubricating and antifouling properties. The triblocks have two end blocks with catechol-anchoring groups and a looping poly(ethylene oxide) (PEO) midblock. The loops mediate strong steric repulsion between two mica surfaces. When sheared at constant speeds of ∼2.5 µm/s, the surfaces exhibit an extremely low friction coefficient of ∼0.002-0.004 without any signs of damage up to pressures of ∼2-3 MPa that are close to most biological bearing systems. Moreover, the polymer loops enhance inhibition of cell adhesion and proliferation compared to polymers in the random coil or brush conformations. These results demonstrate that strongly anchored polymer loops are effective for high lubrication and low cell adhesion and represent a promising candidate for the development of specialized high-performance biomedical coatings.


Assuntos
Anti-Infecciosos/química , Materiais Biomiméticos/química , Catecóis/química , Lubrificantes/química , Polietilenoglicóis/química , Adsorção , Silicatos de Alumínio/química , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Bivalves/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fricção , Lubrificantes/síntese química , Lubrificantes/farmacologia , Camundongos , Conformação Molecular , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Rodófitas/efeitos dos fármacos , Rodófitas/crescimento & desenvolvimento , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA