Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Craniofac Surg ; 33(7): 2041-2044, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35119414

RESUMO

OBJECTIVE: The purpose of this study was to evaluate delayed soft tissue changes of the maxilla-mandibular complex MMC using three-dimensional (3D) cone-beam computed tomography after clockwise repositioning orthognathic surgery. METHODS: This study included 21 patients that underwent maxilla-mandibular complex clockwise rotational orthognathic surgery by 1 doctor from January 2015 to June 2019. Radiographic images (panorama, lateral cephalogram, posteroanterior view, and conebeam computed tomography) were taken and 3D analysis was performed using the Invivo 5 (Anatomage Inc, Santa Clara, CA) to acquire 3D images before surgery, immediately after surgery, at 6 months after surgery and 21 months after surgery. The 9 soft tissue landmarks were measured and compared in terms of postoperative changes in transverse, vertical, and anteroposterior directions. The points were at the outer commissure of the eye fissure (Exocathion; Exc_r, Exc_l), at the midline of both the nasal root and the nasofrontal suture, analogous to bony N (soft tissue nasion; N), the most prominent point on the nasal tip (Pronasale; Prn), the most lateral point in the curved baseline of each ala, indicating the facial insertion of the nasal wing base (Alare curvature; Ac_r, Ac_l), the most lateral point on the soft tissue contour of each mandibular angle (Soft tissue Gonion; Go_r, Go_l), and the most inferior midpoint on the soft tissue contour of the chin (soft tissue menton; Me). RESULTS: The most prominent point of the nasal tip (Prn) moved 1.36 mm upward and 1.55 mm forward in the vertical and anteroposterior planes immediately after surgery. However, there were no significant changes in Ac_r and Ac_l even immediately after surgery. Both soft tissue gonions shifted downward and forward between immediately after surgery and 6 months after surgery. However, no significant change was observed in the value of any of the 9 soft tissue points between 6 months and 21 months after surgery ( P value < 0.05). CONCLUSIONS: No significant changes were observed between 6 and 21 months after surgery, which suggests no delayed soft tissue changes occur in surgically treated patients after the resolution of surgically-related facial edema and swelling and postsurgical remodeling of hard tissue in overlying soft tissue.


Assuntos
Má Oclusão Classe III de Angle , Procedimentos Cirúrgicos Ortognáticos , Cefalometria/métodos , Humanos , Imageamento Tridimensional/métodos , Má Oclusão Classe III de Angle/cirurgia , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Maxila/diagnóstico por imagem , Maxila/cirurgia , Procedimentos Cirúrgicos Ortognáticos/métodos , Rotação
2.
J Craniofac Surg ; 33(5): 1529-1532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119401

RESUMO

BACKGROUND: During bimaxillary surgery, manipulation of the pterygoid plate is required to facilitate movement of the maxilla. This study examined the complications that occurred after handling the pterygoid plate during a Le Fort I osteotomy. PATIENTS AND METHODS: This study compared and analyzed complications according to the pterygoid plate handling method in 80 patients who underwent bimaxillary surgery at Pusan National University Dental Hospital from December 2015 to July 2020. The pterygoid plate was fractured or removed intentionally only if it interfered with the maxilla. Otherwise, it was not treated. The complications during surgery and the follow-up period were investigated. RESULTS: Fourteen patients experienced complications, of which excessive bleeding, hearing problems, and nonunion were encountered in 10, 2, and 2 patients, respectively. Of the 10 patients with excessive bleeding patients, the pterygoid plate was manipulated in 8 patients, which was controlled during surgery. Two patients complained of hearing loss with ear congestion immediately after surgery; both patients improved spontaneously within 1 month. Two nonunion patients underwent plate refixation at least 6 months postoperatively, and normal healing was achieved afterward. CONCLUSIONS: Fracture and removal of the pterygoid plate during orthognathic surgery did not significantly affect the occurrence of complications during and after surgery.


Assuntos
Procedimentos Cirúrgicos Ortognáticos , Osteotomia de Le Fort , Osso Esfenoide , Placas Ósseas , Humanos , Maxila/anatomia & histologia , Maxila/cirurgia , Doenças Maxilares/cirurgia , Osteotomia de Le Fort/efeitos adversos , Osteotomia de Le Fort/métodos , Osso Esfenoide/anatomia & histologia , Osso Esfenoide/cirurgia
3.
BMC Oral Health ; 21(1): 15, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413268

RESUMO

BACKGROUND: The dentin is a tissue, which is formed by odontoblasts at the pulp interface of the teeth that supports the enamel. Odontoblasts, the cranial neural crest cells are derived from ectodermal mesenchymal stem cells (MSCs) and are long and polarized cells. They are present at the outer surface of dentin and play a prominent role about dentin formation. Recently, attention has been focused on induction of odontoblast using various type of MSCs and effects of the 17ß-estradiol supplementation. In this study, we establish an efficient odonto/osteoblast differentiation protocol using 17ß-estradiol supplementation while comparing the odonto/osteoblast ability of various dental MSCs. METHODS: Same donor derived four types of dental MSCs namely dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAP), dental follicle stem cells (DFSCs), and periodontal ligament stem cells (PDLSCs) were evaluated for their stemness characteristics and potency towards odonto/osteoblast (Induced odonto/osteoblast) differentiation. Then 17ß-estradiol supplementation of 0 and 10 µM was applied to the odonto/osteoblast differentiation media for 14 days respectively. Furthermore, mRNA and protein levels of odonto/osteoblast markers were evaluated. RESULTS: All of the experimental groups displayed stemness characteristics by showing adipocyte and chondrocyte differentiation abilities, expression for cell surface markers and cell proliferation capacity without any significant differences. Moreover, all dental derived MSCs were shown to have odonto/osteoblast differentiation ability when cultured under specific conditions and also showed positive expression for odontoblast markers at both mRNA and protein level. Among all, DPSCs revealed the higher differentiation potential than other dental MSCs. Furthermore, odonto/osteoblast differentiation potential was enhanced by supplementing the differentiation media with 17ß-estradiol (E2). CONCLUSIONS: Thus, DPSCs possess higher odonto/osteogenic potential than the SCAPs, DFSCs, PDLSCs and their differentiation capacity can by further enhanced under E2 supplementation.


Assuntos
Polpa Dentária , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Estradiol/farmacologia , Células-Tronco
4.
Int J Med Sci ; 15(11): 1160-1170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123053

RESUMO

Angiogenesis and vascularization are essential for the growth and survival of most tissues. Engineered bone tissue requires an active blood vessel network for survival and integration with mature host tissue. Angiogenesis also has an effect on cell growth and differentiation in vitro. However, the effect of angiogenic factors on osteoprogenitor cell differentiation remains unclear. We studied the effects of human umbilical vein endothelial cells (HUVECs) on osteogenic differentiation of dental follicle-derived stem cells (DFSCs) in vitro by co-culturing DFSCs and HUVECs. Cell viability, based on metabolic activity and DNA content, was highest for co-cultures with a DFSC/HUVEC ratio of 50:50 in a 1:1 mixture of mesenchymal stem cell growth medium and endothelial cell growth medium. Osteoblastic and angiogenic phenotypes were enhanced in co-cultures with a DFSC/HUVEC ratio of 50:50 compared with DFSC monocultures. Increased expression of angiogenic phenotypes and vascular endothelial growth factor (VEGF) levels were observed over time in both 50:50 DFSC/HUVEC co-cultures and DFSC monocultures during culture period. Our results showed that increased angiogenic activity in DFSC/HUVEC co-cultures may stimulate osteoblast maturation of DFSCs. Therefore, the secretion of angiogenic factors from HUVECs may play a role in the osteogenic differentiation of DFSCs.


Assuntos
Diferenciação Celular , Saco Dentário , Células Endoteliais da Veia Umbilical Humana/fisiologia , Osteogênese , Células-Tronco , Adolescente , Células Cultivadas , Técnicas de Cocultura , Humanos , Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular
5.
Int J Mol Sci ; 19(8)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30126144

RESUMO

The reduction of choline acetyltransferase, caused by the loss of cholinergic neurons, leads to the absence of acetylcholine (Ach), which is related to motor nerve degeneration. The aims of the present study were to evaluate the in vitro cholinergic nerve differentiation potential of mesenchymal stem cells from cryopreserved human dental pulp (hDPSCs-cryo) and to analyze the scale of in vivo motor nerve regeneration. The hDPSCs-cryo were isolated and cultured from cryopreserved dental pulp tissues, and thereafter differentiated into cholinergic neurons using tricyclodecane-9-yl-xanthogenate (D609). Differentiated cholinergic neurons (DF-chN) were transplanted into rats to address sciatic nerve defects, and the scale of in vivo motor nerve regeneration was analyzed. During in vitro differentiation, the cells showed neuron-like morphological changes including axonal fibers and neuron body development, and revealed high expression of cholinergic neuron-specific markers at both the messenger RNA (mRNA) and protein levels. Importantly, DF-chN showed significant Ach secretion ability. At eight weeks after DF-chN transplantation in rats with sciatic nerve defects, notably increased behavioral activities were detected with an open-field test, with enhanced low-affinity nerve growth factor receptor (p75NGFR) expression detected using immunohistochemistry. These results demonstrate that stem cells from cryopreserved dental pulp can successfully differentiate into cholinergic neurons in vitro and enhance motor nerve regeneration when transplanted in vivo. Additionally, this study suggests that long-term preservation of dental pulp tissue is worthwhile for use as an autologous cell resource in the field of nerve regeneration, including cholinergic nerves.


Assuntos
Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/transplante , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa , Neurogênese , Nervo Isquiático/fisiologia , Animais , Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Criopreservação , Humanos , Ratos , Nervo Isquiático/lesões
6.
Int J Med Sci ; 14(13): 1418-1429, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200956

RESUMO

We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.


Assuntos
Diferenciação Celular/genética , Endoderma/citologia , Hepatócitos/citologia , Células-Tronco Mesenquimais/citologia , Proliferação de Células/genética , Criopreservação , Polpa Dentária/citologia , Endoderma/metabolismo , Glicogênio/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual
7.
Int J Med Sci ; 13(5): 357-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226776

RESUMO

The deleterious role of cigarette smoke has long been documented in various human diseases including periodontal complications. In this report, we examined this adverse effect of cigarette smoke on human gingival fibroblasts (HGFs) which are critical not only in maintaining gingival tissue architecture but also in mediating immune responses. As well documented in other cell types, we also observed that cigarette smoke promoted cellular reactive oxygen species in HGFs. And we found that this cigarette smoke-induced oxidative stress reduced HGF viability through inducing apoptosis. Our results indicated that an increased Bax/Bcl-xL ratio and resulting caspase activation underlie the apoptotic death in HGFs exposed to cigarette smoke. Furthermore, we detected that cigarette smoke also triggered autophagy, an integrated cellular stress response. Interesting, a pharmacological suppression of the cigarette smoke-induced autophagy led to a further reduction in HGF viability while a pharmacological promotion of autophagy increased the viability of HGFs with cigarette smoke exposures. These findings suggest a protective role for autophagy in HGFs stressed with cigarette smoke, highlighting that modulation of autophagy can be a novel therapeutic target in periodontal complications with cigarette smoke.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/fisiologia , Fibroblastos/efeitos dos fármacos , Gengiva/citologia , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Med Sci ; 13(11): 841-852, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877076

RESUMO

The purpose of the present study was to investigate the in vitro cardiomyogenic differentiation potential of human dental follicle-derived stem cells (DFCs) under the influence of suberoylanilide hydroxamic acid (SAHA), a member of the histone deacetylase inhibitor family, and analyze the in vivo homing capacity of induced cardiomyocytes (iCMs) when transplanted systemically. DFCs from extracted wisdom teeth showed mesenchymal stem cell (MSC) characteristics such as plate adherent growing, expression of MSC markers (CD44, CD90, and CD105), and mesenchymal lineage-specific differentiation potential. Adding SAHA to the culture medium induced the successful in vitro differentiation of DFCs into cardiomyocytes. These iCMs expressed cardiomyogenic markers, including alpha-smooth muscle actin (α-SMA), cardiac muscle troponin T (TNNT2), Desmin, and cardiac muscle alpha actin (ACTC1), at both the mRNA and protein level. For the assessment of homing capacity, PKH26 labeled iCMs were intraperitoneally injected (1×106 cells in 100 µL of PBS) into the experimental mice, and the ratios of PKH26 positive cells to the total number of injected cells, in multiple organs were determined. The calculated homing ratios, 14 days after systemic cell transplantation, were 5.6 ± 1.0%, 3.6 ± 1.1%, and 11.6 ± 2.7% in heart, liver, and kidney respectively. There was no difference in the serum levels of interleukin-2 and interleukin-10 at 14 days after transplantation, between the experimental (iCM injected) and control (no injection or PBS injection) groups. These results demonstrate that DFCs can be an excellent source for cardiomyocyte differentiation and regeneration. Moreover, the iCMs can be delivered into heart muscle via systemic administration without eliciting inflammatory or immune response. This can serve as the pilot study for further investigations into the in vitro cardiomyogenic differentiation potential of DFCs under the influence of SAHA and the in vivo homing capacity of the iCMs into the heart muscle, when injected systemically.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Saco Dentário/citologia , Ácidos Hidroxâmicos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Actinas/metabolismo , Animais , Transplante de Células , Células Cultivadas , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/metabolismo , Projetos Piloto , Cultura Primária de Células , Regeneração , Troponina T/metabolismo , Vorinostat
9.
Differentiation ; 90(1-3): 48-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26493125

RESUMO

In our previous study, dental follicle tissues from extracted wisdom teeth were successfully cryopreserved for use as a source of stem cells. The goals of the present study were to investigate the immunomodulatory properties of stem cells from fresh and cryopreserved dental follicles (fDFCs and cDFCs, respectively) and to analyze in vivo osteogenesis after transplantation of these DFCs into experimental animals. Third passage fDFCs and cDFCs showed similar expression levels of interferon-γ receptor (CD119) and major histocompatibility complex class I and II (MHC I and MHC II, respectively), with high levels of CD119 and MHC I and nearly no expression of MHC II. Both fresh and cryopreserved human DFCs (hDFCs) were in vivo transplanted along with a demineralized bone matrix scaffold into mandibular defects in miniature pigs and subcutaneous tissues of mice. Radiological and histological evaluations of in vivo osteogenesis in hDFC-transplanted sites revealed significantly enhanced new bone formation activities compared with those in scaffold-only implanted control sites. Interestingly, at 8 weeks post-hDFC transplantation, the newly generated bones were overgrown compared to the original size of the mandibular defects, and strong expression of osteocalcin and vascular endothelial growth factor were detected in the hDFCs-transplanted tissues of both animals. Immunohistochemical analysis of CD3, CD4, and CD8 in the ectopic bone formation sites of mice showed significantly decreased CD4 expression in DFCs-implanted tissues compared with those in control sites. These findings indicate that hDFCs possess immunomodulatory properties that involved inhibition of the adaptive immune response mediated by CD4 and MHC II, which highlights the usefulness of hDFCs in tissue engineering. In particular, long-term preserved dental follicles could serve as an excellent autologous or allogenic stem cell source for bone tissue regeneration as well as a valuable therapeutic agent for immune diseases.


Assuntos
Regeneração Óssea , Saco Dentário/citologia , Saco Dentário/imunologia , Imunomodulação , Osteogênese , Células-Tronco/citologia , Células-Tronco/imunologia , Imunidade Adaptativa , Animais , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Proliferação de Células , Criopreservação , Saco Dentário/transplante , Genes MHC da Classe II/imunologia , Humanos , Masculino , Mandíbula/cirurgia , Camundongos , Transplante de Células-Tronco , Suínos , Porco Miniatura , Engenharia Tecidual , Alicerces Teciduais
10.
BMC Oral Health ; 15: 172, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26714451

RESUMO

BACKGROUND: Jaw bone and iliac bone are the most frequently used autologous bone sources for dental implant placement in patients with atrophic alveolar ridges. However, the comparative long-term stability of these two autologous bone grafts have not yet been investigated. The aim of this study was to compare the stability of simultaneously placed dental implants with autologous bone grafts harvested from either the iliac crest or the intraoral jaw bone for severely atrophic alveolar ridges. METHODS: In total, 36 patients (21 men and 15 women) were selected and a retrospective medical record review was performed. We compared the residual increased bone height of the grafted bone, peri-implantitis incidence, radiological density in newly generated bones (HU values), and implant stability using resonance frequency analysis (ISQ values) between the two autologous bone graft groups. RESULTS: Both autologous bone graft groups (iliac bone and jaw bone) showed favorable clinical results, with similar long-term implant stability and overall implant survival rates. However, the grafted iliac bone exhibited more prompt vertical loss than the jaw bone, in particular, the largest vertical bone reduction was observed within 6 months after the bone graft. In contrast, the jaw bone graft group exhibited a slower vertical bone resorption rate and a lower incidence of peri-implantitis during long-term follow-up than the iliac bone graft group. CONCLUSIONS: These findings demonstrate that simultaneous dental implantation with the autologous intraoral jaw bone graft method may be reliable for the reconstruction of edentulous atrophic alveolar ridges.


Assuntos
Transplante Ósseo , Implantação Dentária Endóssea , Implantes Dentários , Aumento do Rebordo Alveolar , Feminino , Humanos , Masculino , Peri-Implantite/epidemiologia , Estudos Retrospectivos
11.
Life (Basel) ; 13(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374070

RESUMO

The actin cytoskeleton plays a crucial role not only in maintaining cell shape and viability but also in homing/engraftment properties of mesenchymal stem cells (MSCs), a valuable source of cell therapy. Therefore, during the cryopreservation process of MSCs, protecting the actin cytoskeleton from the freezing/thawing stress is critical in maintaining their functionality and therapeutic potential. In this study, the safety and cryoprotective potential of sphingosine-1-phosphate (S1P), which has a stabilizing effect on actin cytoskeleton, on dental pulp-derived MSCs (DP-MSCs) was investigated. Our results demonstrated that S1P treatment did not adversely affect viability and stemness of DP-MSCs. Furthermore, S1P pretreatment enhanced cell viability and proliferation properties of post-freeze/thaw DP-MSCs, protecting them against damage to the actin cytoskeleton and adhesion ability as well. These findings suggest that a new cryopreservation method using S1P pretreatment can enhance the overall quality of cryopreserved MSCs by stabilizing the actin cytoskeleton and making them more suitable for various applications in regenerative medicine and cell therapy.

12.
Biomed Res Int ; 2021: 5540877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337022

RESUMO

Mesenchymal stem cells (MSCs) are valuable candidates in tissue engineering and stem cell-based therapy. Traditionally, MSCs derived from various tissues have been successfully expanded in vitro using adherent culture plates commonly called as monolayer two-dimensional (2D) cultures. Recently, many studies demonstrated that stemness and multilineage differentiation potential could be enhanced to greater extent when MSCs are cultured as suspended aggregates by means of three-dimensional (3D) culturing techniques. However, there are limited reports on changed mitochondrial metabolism on 3D spheroid formation of MSCs. Therefore, the present study was aimed at investigating the stemness, differentiation potential, and mitochondrial metabolism capacity of 3D dental pulp-derived MSC (DPSC) spheroids in comparison to monolayer cultured DPSCs. We isolated dental pulp-derived MSCs (DPSCs) and successfully developed a 3D culture system which facilitated the formation of MSC spheroids. The cell aggregation was observed after 2 hours, and spheroids were formed after 24 hours and remained in shape for 72 hours. After spheroid formation, the levels of pluripotent markers increased along with enhancement in adipogenic and osteogenic potential compared to 2D cultured control cells. However, decreased proliferative capacity, cell cycle arrest, and elevated apoptosis rate were observed with the time course of the 3D culture except for the initial 24-hour aggregation. Furthermore, oxygen consumption rates of living cells decreased with the time course of the aggregation except for the initial 24 hours. Overall, our study indicated that the short-term 3D culture of MSCs could be a suitable alternative to culture the cells.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/citologia , Esferoides Celulares/citologia , Adipogenia , Apoptose , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Ciclo Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Consumo de Oxigênio , Células-Tronco Pluripotentes/metabolismo , Esferoides Celulares/metabolismo
13.
Biomed Res Int ; 2021: 8858412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33553433

RESUMO

Previous studies have shown that mesenchymal stem cells (MSCs) derived from various tissue sources can be differentiated into smooth muscle-like cells (SMLCs) in vitro. In this paper, dental pulp-derived mesenchymal stem cells (DPSCs) were evaluated for their differentiation ability towards smooth muscle-like cells (SMLCs) under the effect of widely used cytokines (TGF-ß1 and PDGF-BB) with special focus on different culturing environments. For this purpose, both the commercially used culturing plates (Norm-c) and 0.1% gelatin-precoated (Gel-c) plates were used. Isolated cells displayed plastic adherence, pluripotency and cell surface marker profiling, and adipogenic and osteogenic differentiation potential with lineage specific marker expression. Differentiated cells induced under different culturing plates showed successful differentiation into SMLCs by positively expressing smooth muscle cell (SMC) specific markers both at the mRNA and protein levels. Gelatin coating could substantially enhance DPSC differentiation potential than Norm-c-induced cells. However, the absence of mature marker MHY-11 by immunostaining results from all treatment groups further indicated the development of immature and synthetic SMLCs. Finally, it was concluded that DPSC differentiation ability into SMLCs can be enhanced under cytokine treatment as well as by altering the cellular niche by precoating the culturing plates with suitable substrates. However, to get fully functional, contractile, and mature SMLCs, still many different cytokine cocktail combinations and more suitable coating substrates will be needed.


Assuntos
Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Becaplermina/farmacologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Colágeno , Meios de Cultura/química , Meios de Cultura/farmacologia , Géis , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Pluripotentes/fisiologia , Fator de Crescimento Transformador beta1/farmacologia
14.
Anim Cells Syst (Seoul) ; 23(5): 335-345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700699

RESUMO

The present study investigated the cellular properties in the dental tissue-derived mesenchymal stem cells (DSCs) exposed to nevirapine (NVP), an inhibitor of reverse transcriptase (RTase). After a prolonged exposure of DSCs for 2 weeks, the population doubling time (PDT) was significantly (P < .05) increased by delayed cell growth in the DSCs treated with 250 and 500 µM NVP, compared with untreated DSCs. Furthermore, the G1 phase of cell cycle with high activity of senescence-associated ß-galactosidase was also significantly (P < .05) increased in the 250 µM NVP-treated DSCs, compared with untreated DSCs. The level of telomerase activity was unchanged between control and treatment. However, following the treatment of NVP, negative surface markers for mesenchymal stem cells (MSCs), such as CD34 and CD45, were significantly (P < .05) increased, while positive surface markers for MSCs, such as CD90 and CD105, were significantly (P < .05) decreased in the NVP-treated DSCs than those of untreated DSCs. Furthermore, the differentiation capacity into mesodermal lineage was gradually decreased, and a significant (P < .05) decrease of expression level of NANOG, OCT-4 and SOX-2 transcripts was observed in the DSCs treated with NVP, compared with untreated control DSCs. Taken together, the present results have revealed that inhibition of RTase by NVP induces delayed cell growth and loss of stemness.

15.
Anim Cells Syst (Seoul) ; 23(4): 275-287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31489249

RESUMO

A decrease in the activity of choline acetyltransferase, the enzyme responsible for acetylcholine synthesis in the cholinergic neurons cause neurological disorders involving a decline in cognitive abilities, such as Alzheimer's disease. Mesenchymal stem cells (MSCs) can be used as an efficient therapeutic agents due to their neuronal differentiation potential. Different source derived MSCs may have different differentiation potential under different inductions. Various in vitro protocols have been developed to differentiate MSCs into specific neurons but the comparative effect of different protocols utilizing same source derived MSCs, is not known. To address this issue, dental pulp derived MSCs (DPSCs) were differentiated into cholinergic neurons using three different protocols. In protocol I, DPSCs were pre-induced with serum-free ADMEM containing 1 mM of ß-mercaptoethanol for 24 h and then incubated with 100 ng/ml nerve growth factor (NGF) for 6 days. Under protocol II, DPSCs were cultured in serum-free ADMEM containing 15 µg/ml of D609 (tricyclodecan-9-yl-xanthogenate) for 4 days. Under protocol III, the DPSCs were cultured in serum-free ADMEM containing 10 ng/ml of basic fibroblast growth factor (bFGF), 50 µM of forskolin, 250 ng/ml of sonic hedgehog (SHH), and 0.5 µM of retinoic acid (RA) for 7 days. The DPSCs were successfully trans-differentiated under all the protocols, exhibited neuron-like morphologies with upregulated cholinergic neuron-specific markers such as ChAT, HB9, ISL1, BETA-3, and MAP2 both at mRNA and protein levels in comparison to untreated cells. However, protocol III-induced cells showed the highest expression of the cholinergic markers and secreted the highest level of acetylcholine.

16.
Biosci Rep ; 39(5)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31015367

RESUMO

The present study was carried out to investigate and compare the in vitro differentiation potential of mesenchymal stem cells (MSCs) isolated from human dental tissues (pulp, papilla, and follicle) of the same donor. MSCs were isolated from dental tissues (pulp, papilla, and follicle) following digestion method and were analyzed for the expression of pluripotent markers and cell surface markers. All three types of MSCs were evaluated for their potential to differentiate into mesenchymal lineages. Further, the MSCs were differentiated into pancreatic ß cell-like cells using multistep protocol and characterized for the expression of pancreatic lineage specific markers. Functional properties of differentiated pancreatic ß cell-like cells were assessed by dithizone staining and glucose challenge test. All three types of MSCs showed fibroblast-like morphology upon culture and expressed pluripotent, and mesenchymal cell surface markers. These MSCs were successfully differentiated into mesenchymal lineages and transdifferentiated into pancreatic ß cell-like cells. Among them, dental follicle derived MSCs exhibits higher transdifferentiation potency toward pancreatic lineage as evaluated by the expression of pancreatic lineage specific markers both at mRNA and protein level, and secreted higher insulin upon glucose challenge. Additionally, follicle-derived MSCs showed higher dithizone staining upon differentiation. All three types of MSCs from a single donor possess similar cellular properties and can differentiate into pancreatic lineage. However, dental follicle derived MSCs showed higher potency toward pancreatic lineage than pulp and papilla derived MSCs, suggesting their potential application in future stem cell based therapy for the treatment of diabetes.


Assuntos
Antígenos de Diferenciação , Diferenciação Celular , Polpa Dentária/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adolescente , Células Cultivadas , Polpa Dentária/citologia , Humanos , Células Secretoras de Insulina/citologia , Masculino , Células-Tronco Mesenquimais/citologia
17.
Tissue Eng Regen Med ; 16(5): 513-523, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31624706

RESUMO

Background: Enhancement and maintenance of the stemness of mesenchymal stem cells (MSCs) is one of the most important factors contributing to the successful in vivo therapeutic application of these cells. In this regard, three-dimensional (3D) spheroid formation has been developed as reliable method for increasing the pluripotency of MSCs. Moreover, using a new protocol, we have previously shown that dental tissues of extracted wisdom teeth can be effectively cryopreserved for subsequent use as a source of autologous stem cells. The main purpose of this study is to analyze the stemness and in vitro osteogenic differentiation potential of 3D spheroid dental MSCs compared with conventional mono-layer cultured MSCs. Methods: In this study, MSC-characterized stem cells were isolated and cultured from long-term cryopreserved dental follicles (hDFSCs), and then 2D hDFSCs were cultured under 3D spheroid-forming conditions using a newly designed microchip dish. The spheroids (3D hDFSCs) thus produced were investigated and characterized with respect to stemness, MSC marker expression, apoptosis, cell cycle analysis, extracellular matrix (ECM) production, and osteogenic and adipogenic differentiation properties. Results: In terms of MSC and senescence markers, spheroid cells showed no difference when compared with 2D hDFSCs; however, 3D hDFSCs were observed to have a higher proportion of cell cycle arrest and a larger number of apoptotic cells. Moreover, spheroids showed substantially increased levels of pluripotency marker (early transcription factors) and ECM protein expression. Compared with 2D hDFSCs, there was also a notable enhancement in the osteogenic induction potential of spheroids, although no differences were observed with respect to in vitro adipogenesis. Conclusion: To the best of our knowledge, this is the first study to demonstrate the application of a spheroid culture system for dental follicle-derived stem cells using a microchip dish. Although further studies are needed, including in vivo transplantation, the results obtained in this study indicate that spheroid hDFSCs derived from cryopreserved dental follicle tissues could be used as a valuable source of autologous stem cells for bone tissue regeneration.


Assuntos
Criopreservação/métodos , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Apoptose/fisiologia , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
18.
J Biomed Mater Res A ; 107(10): 2183-2194, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31116505

RESUMO

Hypoxia and limited vascularization inhibit bone growth and recovery after surgical debridement to treat osteomyelitis. Similarly, despite significant efforts to create functional tissue-engineered organs, clinical success is often hindered by insufficient oxygen diffusion and poor vascularization. To overcome these shortcomings, we previously used the oxygen carrier perfluorooctane (PFO) to develop PFO emulsion-loaded hollow microparticles (PFO-HPs). PFO-HPs act as a local oxygen source that increase cell viability and maintains the osteogenic differentiation potency of human periosteum-derived cells (hPDCs) under hypoxic conditions. In the present study, we used a miniature pig model of mandibular osteomyelitis to investigate bone regeneration using hPDCs seeded on PFO-HPs (hPDCs/PFO-HP) or hPDCs seeded on phosphate-buffered saline (PBS)-HPs (hPDCs/PBS-HP). Osteomyelitis is characterized by a series of microbial invasion, vascular disruption, bony necrosis, and sequestrum formation due to impaired host defense response. Sequential plain radiography, computed tomography (CT), and 3D reconstructed CT images revealed new bone formation was more advanced in defects that had been implanted with the hPDCs/PFO-HPs than in defects implanted with the hPDCs/PBS-HP. Thus, PFO-HPs are a promising tissue engineering approach to repair challenging bone defects and regenerate structurally organized bone tissue with 3D architecture.


Assuntos
Regeneração Óssea/fisiologia , Mandíbula/patologia , Microesferas , Osteoblastos/citologia , Osteomielite/terapia , Oxigênio/farmacologia , Periósteo/citologia , Animais , Regeneração Óssea/efeitos dos fármacos , Soluções Tampão , Modelos Animais de Doenças , Fluorocarbonos/química , Humanos , Mandíbula/diagnóstico por imagem , Mandíbula/efeitos dos fármacos , Mandíbula/microbiologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteomielite/diagnóstico por imagem , Osteomielite/microbiologia , Osteomielite/patologia , Implantação de Prótese , Staphylococcus aureus/efeitos dos fármacos , Suínos , Porco Miniatura
19.
J Korean Assoc Oral Maxillofac Surg ; 43(3): 186-190, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28770161

RESUMO

A surgical approach involving the retromolar trigone, posterolateral maxilla, and pterygoid region is the most challenging in the field of maxillofacial surgery. The upper cheek flap (Weber-Ferguson incision) with subciliary extension and the maxillary swing approach have been considered as alternatives; however, neither approach provides sufficient exposure of the pterygoid region and the anterior portion of the mandibular ramus. In this report, we describe two cases in which a lower cheek flap approach was used for complete tumor resection in the retromolar trigone and the anterior mandibular ramus. This approach allows full exposure of the posterolateral maxilla and the pterygoid region as well as the retromolar trigone without causing major sensory disturbances to the lower lip. A mental nerve anastomosis after tumor resection was performed in one patient and resulted in approximately 90% sensory recovery in the lower lip. The lower cheek flap approach provides adequate exposure of the posterolateral maxilla, including the pterygoid, retromolar trigone, and mandibular ramus areas. If the mental nerve can be anastomosed during flap approximation, postoperative sensory disturbances to the lower lip can be minimized.

20.
J Tissue Eng Regen Med ; 11(2): 489-500, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-25052907

RESUMO

The main purpose of this study was to develop a cryopreservation method for human dental follicle tissue to maintain autologous stem cells as a resource. A modified cryoprotectant, consisting of 0.05 m glucose, 0.05 m sucrose and 1.5 m ethylene glycol in phosphate-buffered saline (PBS) was employed, with a slow-ramp freezing rate. We observed > 70% of cell survival rate after 3 months of tissue storage. Isolated and cultured human dental stem cells (hDSCs) from cryopreserved dental follicles expressed mesenchymal stem cell markers at a level similar to that of hDSCs from fresh tissue. They also successfully differentiated in vitro into the mesenchymal lineage, osteocytes, adipocytes and chondrocytes under specific inductions. Using immunohistochemistry, the early transcription factors OCT4, NANOG and SOX2 were moderately or weakly detected in the nucleus of both fresh and cryopreserved dental follicles. In addition, p63, CCND1, BCL2 and BAX protein expression levels were the same in both fresh and cryopreserved tissues. However, the positive-cell ratio and intensity of p53 protein was higher in cryopreserved tissues than in fresh tissues, indicating direct damage of the freeze-thawing process. Real-time PCR analysis of hDSCs at passage 2 from both fresh and cryopreserved dental follicles showed similar levels of mRNA for apoptosis- and transcription-related genes. Based on these results, a newly developed cryoprotectant, along with a slow ramp rate freezing procedure allows for long-term dental tissue preservation for later use as an autologous stem cell resource in regenerative cell therapy. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Criopreservação , Saco Dentário/citologia , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Adolescente , Adulto , Apoptose , Linhagem da Célula , Sobrevivência Celular , Condrócitos/citologia , Crioprotetores/química , Saco Dentário/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Dente Serotino/citologia , Osteócitos/citologia , Engenharia Tecidual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA