Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 32(34): 9077-88, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21890195

RESUMO

Cationic polyurethane, a biodegradable non-viral vector, protects DNA from nuclease degradation and helps to deliver genes efficiently. Oct4, a POU-domain transcription factor, is highly expressed in maintaining pluripotency and cellular reprogramming process in stem cells. SirT1, a NAD-dependent histone deacetylase, is an essential mediator of cellular longevity. Herein we demonstrated that both Oct4 and SirT1 (Oct4/SirT1) expression was decreased in an age-dependent manner in retina with aged-related macular degeneration and retinal pigment epithelium cells (RPEs). To investigate the possible rescuing role of Oct4/SirT1, polyurethane-short branch polyethylenimine (PU-PEI) was used to deliver Oct4/SirT1 into aged RPEs (aRPEs) or light-injured rat retinas. Oct4/SirT1 overexpression increased the expression of several progenitor-related genes and the self-renewal ability of aRPEs. Moreover, Oct4/SirT1 overexpression resulted in the demethylation of the Oct4 promoter and enhanced the expression of antioxidant enzymes, which was accompanied by a decrease in intracellular ROS production and hydrogen peroxide-induced oxidative stress. Importantly, PU-PEI-mediated Oct4/SirT1 gene transfer rescued retinal cell loss and improved electroretinographic responses in light-injured rat retinas. In summary, these data suggest that PU-PEI-mediated delivery of Oct4/SirT1 reprograms aRPEs into a more primitive state and results in cytoprotection by regulating the antioxidative capabilities of these cells.


Assuntos
Fator 3 de Transcrição de Octâmero/administração & dosagem , Fator 3 de Transcrição de Octâmero/genética , Polietilenoimina/química , Poliuretanos/química , Epitélio Pigmentado da Retina/metabolismo , Sirtuína 1/administração & dosagem , Sirtuína 1/genética , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Expressão Gênica , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/patologia
2.
J Biomed Mater Res A ; 84(3): 622-30, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17635011

RESUMO

Skin tissue engineering is a possible solution for the treatment of extensive skin defect. The ultimate goal of skin tissue engineering is to restore the complete functions of native skin, but until now the structures and functions of skins are only partially restored. By negative immunoselection (CD45 and glycophorin A), we isolated and cultivated adult human bone marrow stem cells (hBMSCs) that are of multilineage differentiation potential. In this study, we first demonstrated that by using gelatin/thermo-sensitive poly N-isopropylacrylamide (pNIPAAm) and the immunocompromised mice model, the hBMSCs possess the differentiation potential of epidermis and the capability of healing skin wounds. The in vitro observations and the results of the scanning electron microscope showed that the hBMSCs can attach and proliferate in the gelatin/thermo-sensitive pNIPAAm. To further monitor the in vivo growth effect of the hBMSCs in the skin-defected nude mice, the green fluorescence protein (GFP) gene was transduced into the hBMSCs by the murine stem cell viral vector. The results showed that the rates of cell growth and wound recovery in the hBMSC-treated group were significantly higher than those in the control group, which was only treated with the gelatin/pNIPAAm (p < 0.01). More importantly, the re-epithelialization markers of human pan-cytokeratin and E-cadherin were significantly increased on day 7, day 14, and day 21 after the hBMSC-scaffold with the pNIPAAM in the mice with skin defects (p < 0.05). Moreover, the stem cell markers of human CD13 and CD105 were gradually decreased during the period of wound healing. In sum, this novel method provides a transferring system for cell therapies and maintains its temperature-sensitive property of easy-peeling by lower-temperature treatment. In addition, the in vitro and in vivo GFP imaging systems provide a new imaging modality for understanding the differentiation process and the effective expression of stem cells in wound healing.


Assuntos
Acrilamidas , Células-Tronco Adultas , Células da Medula Óssea , Gelatina , Polímeros , Regeneração/fisiologia , Transplante de Células-Tronco , Alicerces Teciduais , Resinas Acrílicas , Adolescente , Adulto , Animais , Transplante de Medula Óssea , Técnicas de Cultura de Células , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fenômenos Fisiológicos da Pele , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA