Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Biol Macromol ; 207: 278-288, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35257733

RESUMO

Three dimensional (3D) bioprinting technology has been making a progressive advancement in the field of tissue engineering to produce tissue constructs that mimic the shape, framework, and microenvironment of an organ. The technology has not only paved the way to organ development but has been widely studied for its application in drug and cosmetic testing using 3D bioprinted constructs. However, not much has been explored on the utilization of bioprinting technology for the development of tumor models to test anti-cancer drug efficacy. The conventional methodology involves a two dimensional (2D) monolayer model to test cellular drug response which has multiple limitations owing to its inability to mimic the natural tissue environment. The choice of bioink for 3D bioprinting is critical as cell morphology and proliferation depend greatly on the property of bioink. In this study, we developed a multicomponent bioink composed of alginate, diethylaminoethyl cellulose, gelatin, and collagen peptide to generate a 3D bioprinted construct. The bioink has been characterised and validated for its printability, shape fidelity and biocompatibility to be used for generating tumor models. Further, a bioprinted tumor model was developed using lung cancer cell line and the efficacy of 3D printed construct for drug screening application was established.


Assuntos
Bioimpressão , Alginatos/química , Bioimpressão/métodos , Celulose , Colágeno , Avaliação Pré-Clínica de Medicamentos , Gelatina , Peptídeos/farmacologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Int J Biol Macromol ; 189: 398-409, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34419550

RESUMO

INTRODUCTION: Biofabrication of skin tissue equivalents using 3D bioprinting technology has gained much attention in recent times due to the simplicity, the versatility of the technology and its ability in bioengineering biomimetic tissue histology. The key component being the bioink, several groups are actively working on the development of various bioink formulations for optimal skin tissue construction. METHODS: Here, we present alginate (ALG), gelatin (GEL) and diethylaminoethyl cellulose (DCEL) based bioink formulation and its application in bioprinting and biofabrication of skin tissue equivalents. Briefly, DEAE cellulose powder was dispersed in alginate solution with constant stirring at 60 °C to obtain a uniform distribution of cellulose fibers; this was then mixed with GEL solution to prepare the bioink. The formulation was systematically characterized for its morphological, physical, chemical, rheological, biodegradation and biocompatibility properties. The printability, shape fidelity and cell-laden printing were assessed using the CellInk bioprinter. RESULTS: The bioink proved to be a good printable, non-cytotoxic and stable hydrogel formulation. The primary human fibroblast and keratinocyte-loaded 3D bioprinted constructs showed excellent cell viability, collagen synthesis, skin-specific marker and biomimetic tissue histology. CONCLUSION: The results demonstrated the successful formulation of ALG-GEL-DCEL bioink and its application in the development of human skin tissue equivalents with distinct epidermal-dermal histological features.


Assuntos
Alginatos/farmacologia , DEAE-Celulose/química , Gelatina/farmacologia , Tinta , Microtecnologia , Pele/efeitos dos fármacos , Engenharia Tecidual , Alicerces Teciduais/química , Adulto , Animais , Materiais Biocompatíveis/química , Biomarcadores/metabolismo , Bioimpressão , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos , Impressão Tridimensional , Reologia , Pele Artificial , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Nanomedicine ; 6(1): 153-60, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19616123

RESUMO

We report a nanoformulation of curcumin with a tripolymeric composite for delivery to cancer cells. The composite nanoparticles (NPs) were prepared by using three biocompatible polymers-alginate (ALG), chitosan (CS), and pluronic-by ionotropic pre-gelation followed by polycationic cross-linking. Pluronic F127 was used to enhance the solubility of curcumin in the ALG-CS NPs. Atomic force and scanning electron microscopic analysis showed that the particles were nearly spherical in shape with an average size of 100 +/- 20 nm. Fourier transform-infrared analysis revealed potential interactions among the constituents in the composite NPs. Encapsulation efficiency (%) of curcumin in composite NPs showed considerable increase over ALG-CS NPs without pluronic. The in vitro drug release profile along with release kinetics and mechanism from the composite NPs were studied under simulated physiological conditions for different incubation periods. A cytotoxicity assay showed that composite NPs at a concentration of 500 microg/mL were nontoxic to HeLa cells. Cellular internalization of curcumin-loaded composite NPs was confirmed from green fluorescence inside the HeLa cells. The half-maximal inhibitory concentrations for free curcumin and encapsulated curcumin were found to be 13.28 and 14.34 muM, respectively. FROM THE CLINICAL EDITOR: A nanoformulation of curcumin with a tri-component polymeric composite for delivery to cancer cells is reported in this paper. Cellular internalization of curcumin loaded composite nanoparticles was confirmed from green fluorescence inside the HeLa cells.


Assuntos
Alginatos/química , Quitosana/química , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Neoplasias/metabolismo , Poloxâmero/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Glucurônico/química , Células HeLa , Ácidos Hexurônicos/química , Humanos , Cinética , Microscopia de Fluorescência , Nanocompostos/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Biomater Sci ; 8(2): 631-647, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31729495

RESUMO

The effectiveness of cell transplantation can be improved by optimization of the transplantation site. For some types of cells that form highly oxygen-demanding tissue, e.g., pancreatic islets, a successful engraftment depends on immediate and sufficient blood supply. This critical point can be avoided when cells are transplanted into a bioengineered pre-vascularized cavity which can be formed using a polymer scaffold. In our study, we tested surface-modified poly(lactide-co-caprolactone) (PLCL) capsular scaffolds containing the pro-angiogenic factor VEGF. After each modification step (i.e., amination and heparinization), the surface properties and morphology of scaffolds were characterized by ATR-FTIR and XPS spectroscopy, and by SEM and AFM. All modifications preserved the gross capsule morphology and maintained the open pore structure. Optimized aminolysis conditions decreased the Mw of PLCL only up to 10% while generating a sufficient number of NH2 groups required for the covalent immobilization of heparin. The heparin layer served as a VEGF reservoir with an in vitro VEGF release for at least four weeks. In vivo studies revealed that to obtain highly vascularized PLCL capsules (a) the optimal VEGF dose for the capsule was 50 µg and (b) the implantation time was four weeks when implanted into the greater omentum of Lewis rats; dense fibrous tissue accompanied by vessels completely infiltrated the scaffold and created sparse granulation tissue within the internal cavity of the capsule. The prepared pre-vascularized pouch enabled the islet graft survival and functioning for at least 50 days after islet transplantation. The proposed construct can be used to create a reliable pre-vascularized pouch for cell transplantation.


Assuntos
Bioengenharia , Transplante das Ilhotas Pancreáticas , Neovascularização Fisiológica , Poliésteres/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/análise , Cápsulas/química , Cápsulas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Injeções Intraperitoneais , Masculino , Estrutura Molecular , Tamanho da Partícula , Poliésteres/química , Ratos , Ratos Endogâmicos Lew , Estreptozocina/administração & dosagem , Fatores de Crescimento do Endotélio Vascular/química
5.
Biomater Sci ; 4(3): 460-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26730413

RESUMO

Tissue engineering benefits from novel materials with precisely tunable physical, chemical and mechanical properties over a broad range. Here we report a practical approach to prepare Bombyx mori silk fibroin hydrogels using the principle of non-solvent induced phase separation (NIPS). A combination of reconstituted silk fibroin (RSF) and methanol (non-solvent), with a final concentration of 2.5% w/v and 12.5% v/v respectively, maintained at 22 °C temperature turned into a hydrogel within 10 hours. Freeze-drying of this gel gave a foam with a porosity of 88%, a water uptake capacity of 89% and a swelling index of 8.6. The gelation kinetics and the loss tangent of the gels were investigated by rheometry. The changes in the morphology of the porous foams were visualized by SEM. The changes in RSF chemical composition and the relative fraction of its secondary structural elements were analyzed by ATR-FTIR along with Fourier self-deconvolution. And, the changes in the glass transition temperature, specific heat capacity and the relative fraction of crystallinity of RSF were determined by TM-DSC. Data suggested that RSF-water-methanol behaved as a polymer-solvent-non-solvent ternary phase system, wherein the demixing of the water-methanol phases altered the thermodynamic equilibrium of RSF-water phases and resulted in the desolvation and eventual separation of the RSF phase. Systematic analysis revealed that both gelation time and the properties of hydrogels and porous foams could be controlled by the ratios of RSF and non-solvent concentration as well as by the type of non-solvent and incubation temperature. Due to the unique properties we envisage that the herein prepared NIPS induced RSF hydrogels and porous foams can possibly be used for the encapsulation of cells and/or for the controlled release of both hydrophilic and hydrophobic drugs.


Assuntos
Materiais Biocompatíveis/química , Bombyx/química , Fibroínas/química , Hidrogéis/química , Solventes/química , Animais , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Temperatura , Engenharia Tecidual
6.
Biomed Mater ; 11(1): 015002, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26752658

RESUMO

Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold's outer surface at the air-liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications.


Assuntos
Materiais Biocompatíveis/síntese química , Calefação/métodos , Poliésteres/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Fracionamento Químico/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Transição de Fase , Polímeros/química , Porosidade , Propriedades de Superfície , Engenharia Tecidual/métodos
7.
PLoS One ; 9(9): e108792, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275373

RESUMO

The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.


Assuntos
Bioengenharia/métodos , Transição de Fase , Polímeros/química , Temperatura , Animais , Varredura Diferencial de Calorimetria , Masculino , Mercúrio/análise , Microscopia Eletrônica de Varredura , Peso Molecular , Porosidade , Ratos Endogâmicos BN , Propriedades de Superfície , Fatores de Tempo , Alicerces Teciduais/química
8.
Biomed Mater ; 7(4): 045004, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22556184

RESUMO

Hepatic tissue engineering, which aims to construct artificial liver tissues, requires a suitable extracellular matrix (ECM) for growth and proliferation of metabolically active hepatocytes. The current paper describes the development of a biomimetic artificial ECM, for hepatic tissue engineering applications, by mimicking the architectural features and biochemical composition of native ECM. Electrospinning was chosen as the fabrication technique of choice, while regenerated silk fibroin (RSF) and galactosylated chitosan (GalCS) were chosen as materials of choice. Poly(ethylene oxide) was used as a processing aid. Methodical optimization studies were performed to obtain smooth and continuous nanofibers with homogenous size distribution. Extensive characterization studies were performed to determine its morphological, physical, chemical/structural, thermal and cytotoxicity properties. Subsequently, detailed in vitro hepatocyte compatibility studies were performed using HepG2 cell line. Remarkably, the studies revealed that the growth, viability, metabolic activity and proliferation of hepatocytes were relatively superior on RSF-GalCS scaffold than on pure RSF and pure GalCS. In summary, the electrospun nanofibrous RSF-GalCS scaffold tries to mimic both architectural and biochemical features of native ECM, and hence could be an appropriate scaffold for in vitro engineering of hepatic tissue. However, additional experiments are needed to confirm the superiority in characteristic functionality of hepatocytes growing on RSF-GalCS scaffold in relation to RSF and GalCS scaffolds, and to test its behavior in vivo.


Assuntos
Matriz Extracelular/metabolismo , Fibroínas/química , Fígado/metabolismo , Seda/metabolismo , Engenharia Tecidual/métodos , Animais , Biomimética , Bombyx , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Quitosana/química , Galactose/química , Células Hep G2 , Hepatócitos/citologia , Humanos , Camundongos , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Termogravimetria/métodos , Difração de Raios X
9.
Adv Healthc Mater ; 1(4): 393-412, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23184771

RESUMO

Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão/métodos , Fibroínas/química , Fibroínas/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais , Bioimpressão/instrumentação
10.
J Biomater Appl ; 25(6): 619-39, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20207782

RESUMO

We report here the potential of Pluronic tri-block copolymer micelles for the formulation of curcumin, a natural dietary compound having great therapeutic potential against many diseases including cancer. Two most commonly used Pluronic F127 and F68 were used for the formulation and analyzed for curcumin encapsulation efficiency and stability. The encapsulation of drug in micelle was highly dependent on drug-to-copolymer ratio. Pluronic F127 showed better encapsulation efficiency than Pluronic F68. In vitro release profile demonstrated slower and sustained release of curcumin from Pluronic micelles. The lyophilized form of the formulations exhibited good stability for long-term storage. The physical interaction of curcumin with Pluronic was evident by XRD analysis, UV-visible, fluorescence, and FT-IR spectroscopy. AFM study showed that the drug-encapsulated micelles were spherical in shape with diameters below 100 nm. The in vitro cytotoxicity of the drug formulations was investigated with HeLa cancer cells. Pluronic-encapsulated curcumin showed comparable anticancer activity with free curcumin.


Assuntos
Curcumina/administração & dosagem , Excipientes/química , Micelas , Nanocápsulas , Poloxâmero/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Excipientes/análise , Células HeLa , Humanos , Microscopia de Força Atômica , Modelos Teóricos , Nanocápsulas/análise , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Poloxâmero/análise , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Acta Biomater ; 4(6): 1752-61, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18524701

RESUMO

A novel polymeric amphiphile, mPEG-PA, was synthesized with methoxy poly(ethylene glycol) (mPEG) as the hydrophilic and palmitic acid (PA) as the hydrophobic segment. The conjugate prepared in a single-step reaction showed minimal toxicity on HeLa cells. (1)H nuclear magnetic resonance imaging and Fourier transform infrared spectroscopy revealed that the conjugation was through an ester linkage, which is biodegradable. Enzymes having esterase activity, such as lipase, can degrade the conjugate easily, as observed by in vitro studies. mPEG-PA conjugate undergoes self-assembly in an aqueous environment, as evidenced by fluorescence spectroscopic studies with pyrene as a probe. The mPEG-PA conjugate formed micelles in the aqueous solution with critical micelle concentration of 0.12 g l(-1). Atomic force microscopy and dynamic light scattering studies showed that the micelles were spherical in shape, with a mean diameter of 41.43 nm. The utility of mPEG-PA to entrap the potent chemopreventive agent curcumin in the core of nanocarrier was investigated. The encapsulation of a highly hydrophobic compound like curcumin in the nanocarrier makes the drug readily soluble in an aqueous system, which can increase the ease of dosing and makes intravenous dosing possible. Drug-loaded micelle nanoparticles showed good stability in physiological condition (pH 7.4), in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 6.8). This micellar formulation can be used as an enzyme-triggered drug release carrier, as suggested by in vitro enzyme-catalyzed drug release using pure lipase and HeLa cell lysate. The IC(50) of free curcumin and encapsulated curcumin was found to be 14.32 and 15.58 microM, respectively.


Assuntos
Materiais Biocompatíveis/química , Curcumina/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Catálise , Linhagem Celular Tumoral , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Micelas , Microscopia Confocal , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA