Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Diabetes Investig ; 11(1): 28-38, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31144464

RESUMO

AIMS/INTRODUCTION: Transplantation of stem cells promotes axonal regeneration and angiogenesis in a paracrine manner. In the present study, we examined whether the secreted factors in conditioned medium of stem cells from human exfoliated deciduous teeth (SHED-CM) had beneficial effects on diabetic polyneuropathy in mice. MATERIALS AND METHODS: Conditioned medium of stem cells from human exfoliated deciduous teeth was collected 48 h after culturing in serum-free Dulbecco's modified Eagle's medium (DMEM), and separated into four fractions according to molecular weight. Dorsal root ganglion neurons from C57BL/6J mice were cultured with SHED-CM or DMEM to evaluate the effect on neurite outgrowth. Streptozotocin-induced diabetic mice were injected with 100 µL of SHED-CM or DMEM into the unilateral hindlimb muscles twice a week over a period of 4 weeks. Peripheral nerve functions were evaluated by the plantar test, and motor and sensory nerve conduction velocities. Intraepidermal nerve fiber densities, capillary number-to-muscle fiber ratio, capillary blood flow and morphometry of sural nerves were also evaluated. RESULTS: Conditioned medium of stem cells from human exfoliated deciduous teeth significantly promoted neurite outgrowth of dorsal root ganglion neurons compared with DMEM. Among four fractions of SHED-CM, the only fraction of <6 kDa promoted the neurite outgrowth of dorsal root ganglion neurons. In addition, SHED-CM significantly prevented decline in sensory nerve conduction velocities compared with DMEM in diabetic mice. Although SHED-CM did not improve intraepidermal nerve fiber densities or morphometry of sural nerves, SHED-CM ameliorated the capillary number-to-muscle fiber ratio and capillary blood flow. CONCLUSIONS: These results suggested that SHED-CM might have a therapeutic effect on diabetic polyneuropathy through promoting neurite outgrowth, and the increase in capillaries might contribute to the improvement of neural function.


Assuntos
Polpa Dentária/citologia , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/terapia , Gânglios Espinais/citologia , Neurônios/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Crescimento Neuronal
2.
Cells ; 9(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142678

RESUMO

Diabetes is a major risk factor for atherosclerosis and ischemic vascular diseases. Recently, regenerative medicine is expected to be a novel therapy for ischemic diseases. Our previous studies have reported that transplantation of stem cells promoted therapeutic angiogenesis for diabetic neuropathy and ischemic vascular disease in a paracrine manner, but the precise mechanism is unclear. Therefore, we examined whether secreted factors from stem cells had direct beneficial effects on endothelial cells to promote angiogenesis. The soluble factors were collected as conditioned medium (CM) 48 h after culturing stem cells from human exfoliated deciduous teeth (SHED) in serum-free DMEM. SHED-CM significantly increased cell viability of human umbilical vein endothelial cells (HUVECs) in MTT assays and accelerated HUVECs migration in wound healing and Boyden chamber assays. In a Matrigel plug assay of mice, the migrated number of primary endothelial cells was markedly increased in the plug containing SHED-CM or SHED suspension. SHED-CM induced complex tubular structures of HUVECs in a tube formation assay. Furthermore, SHED-CM significantly increased neovascularization from the primary rat aorta, indicating that SHED-CM stimulated primary endothelial cells to promote comprehensive angiogenesis processes. The angiogenic effects of SHED-CM were the same or greater than the effective concentration of VEGF. In conclusion, SHED-CM directly stimulates vascular endothelial cells to promote angiogenesis and is promising for future clinical application.


Assuntos
Indutores da Angiogênese/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco/metabolismo , Dente Decíduo/citologia , Animais , Movimento Celular/efeitos dos fármacos , Separação Celular/métodos , Células Cultivadas , Criança , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Esfoliação de Dente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA