Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 722: 150143, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38795451

RESUMO

Nuclear factor (NF)-κB signaling is not only important for the immune and inflammatory responses but also for the normal development of epithelial cells, such as those in the skin and tooth. Here, we generated epithelial cell-specific p65-deficient (p65Δepi-/-) mice to analyze the roles of NF-κB signaling in epithelial cell developent. Notably, p65Δepi-/- mice exhibited no abnormalities in their appearance compared to the control (p65flox/flox) littermates. Furthermore, no major changes were observed in the skin, hair growth, and shape and color of the incisors and molars. However, 65 % of p65Δepi-/- mice exhibited corneal thickening after 8 weeks of age, and 30 % of p65Δepi-/- mice exhibited hair growth from the mandibular incisors around 24 weeks of age. No hair growth was observed at 36 and 42 weeks of age. However, micro-computed tomography images revealed a large cavity below the mandibular incisors extending to the root of the incisor. Histological analysis revealed that the cavity was occupied by a connective tissue containing hair-like structures with many dark brown granules that disappeared after melanin bleaching, confirming the presence of hair. Although inflammatory cells were also observed near the eruption site of the incisor teeth of p65Δepi-/- mice, no major disturbance was observed in the arrangement of enamel epithelial cells. Overall, these results highlight the role of p65 in the maintenance of epithelial cell homeostasis during aging.


Assuntos
Senescência Celular , Células Epiteliais , Fator de Transcrição RelA , Animais , Camundongos , Envelhecimento/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
2.
Biochem Biophys Res Commun ; 632: 40-47, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198202

RESUMO

Autophagy is a non-selective action in which cells degrade parts of themselves, reusing degraded cellular components. Among autophagy-related gene (ATG) family members, ATG4 proteins play crucial roles in the microtubule-associated protein 1 light chain 3 (LC3) phosphatidylethanolamine (PE) system which is essential for autophagosome maturation. Although autophagy has been shown to be involved in osteoclastic bone resorption, the role of ATG4/LC3 in bone resorption remains unclear. When mouse bone marrow cells were treated with various concentrations of NSC185058 (NSC), a specific inhibitor of ATG4B, 1 h prior to treatment with receptor activator of NF-κB ligand (RANKL) in the presence of macrophage colony stimulating factor (M-CSF), NSC inhibited osteoclastogenesis in a dose-dependent manner. Addition of NSC in the late stages of osteoclast differentiation suppressed multinucleation and reduced the expression of markers for mature osteoclasts such as Dc-stamp, Mmp9, and Ctsk. NSC also suppressed actin ring formation and pit formation in mature osteoclasts. When a periodontitis model involving eight-week-old male mice in which the right maxillary second molar had been ligated with silk thread was injected with or without NSC, alveolar bone resorption was suppressed by a decrease in the number of osteoclasts in the NSC-treated group. These results suggest that LC3 is important for the maturation of osteoclasts and that LC3 inhibition is a new therapeutic strategy for periodontal disease.


Assuntos
Diferenciação Celular , Osteoclastos , Animais , Masculino , Camundongos , Actinas/metabolismo , Perda do Osso Alveolar , Ligantes , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Osteoclastos/metabolismo , Fosfatidiletanolaminas/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Seda , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo
3.
Biochem Biophys Res Commun ; 495(1): 131-135, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080746

RESUMO

It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis.


Assuntos
Antígenos CD36/metabolismo , Galinhas/fisiologia , Gorduras na Dieta/metabolismo , Lipase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Paladar , Sequência de Aminoácidos , Animais , Sequência de Bases , Antígenos CD36/análise , Antígenos CD36/genética , Galinhas/genética , Clonagem Molecular , Ácidos Graxos não Esterificados/metabolismo , Expressão Gênica , Lipase/análise , Lipase/genética , Palato/metabolismo , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/fisiologia , Percepção Gustatória , Triglicerídeos/metabolismo
4.
Biochem Biophys Res Commun ; 458(2): 387-91, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25656577

RESUMO

Clarification of the mechanism of chickens' taste sense will provide meaningful information for creating and improving new feedstuff for chickens, because the character of taste receptors in oral tissues affects feeding behavior in animals. Although fatty acids are partly recognized via G-protein coupled receptor 120 (GPR120) for fat taste in mammalian oral tissues, the fat taste receptor of chickens has not been elucidated. Here we cloned chicken GPR120 (cGPR120) from the chicken palate, which contains taste buds. By using Ca(2+) imaging methods, we identified oleic acid and linoleic acid as cGPR120 agonists. Interestingly, in a behavioral study the chickens preferred corn oil-rich feed over mineral oil (control oil)-rich feed. Because corn oil contains high amounts of oleic acid and linoleic acid, this result was thought to be reasonable. Taken together, the present results suggest that cGPR120 is one of the functional fat taste receptors in chickens.


Assuntos
Galinhas/fisiologia , Ácidos Graxos/farmacologia , Comportamento Alimentar/fisiologia , Palato/patologia , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Gorduras na Dieta/metabolismo , Ácidos Graxos/farmacocinética , Comportamento Alimentar/efeitos dos fármacos , Palato/citologia , Palato/efeitos dos fármacos , Papilas Gustativas/efeitos dos fármacos
5.
Auris Nasus Larynx ; 51(3): 443-449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520975

RESUMO

OBJECTIVE: Olfactory and gustatory functions are important sensory aspects in humans. Although they are believed to influence each other, their interrelationship is not well understood. In this study, we aimed to investigate the relationship between the olfactory and gustatory functions based on the results of a large-scale epidemiological study (Iwaki Health Promotion Project) of the general local population. METHODS: We analyzed 565 participants who underwent taste and olfactory tests in the 2019 Iwaki Project. Gustatory function was tested for four taste qualities (sweet, sour, salty, and bitter) using whole-mouth taste tests. Olfactory function was tested using the University of Pennsylvania Smell Identification Test modified for Japanese (UPSIT-J). We evaluated sex-related differences between olfactory and gustatory functions and the effects of various factors on olfactory identification using multivariate analysis. Furthermore, we compared the percentage of accurate UPSIT-J responses between the normal and hypogeusia groups. We also analyzed the effects of taste and olfactory functions on eating. RESULTS: Olfactory and gustatory functions were lower in men than in women. Among the four taste qualities, salty taste was the most closely associated with olfactory identification ability, with lower olfactory scores of salty taste in the hypogeusia group than in the normal group. Moreover, the hyposmia group had higher daily salt intake than the normal olfaction group in women. CONCLUSION: These results suggest that olfactory identification tests may be useful in predicting elevated salt cognitive thresholds, leading to a reduction in salt intake, which may contribute to hypertension prevention.


Assuntos
Promoção da Saúde , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Japão/epidemiologia , Idoso , Fatores Sexuais , Olfato/fisiologia , Paladar/fisiologia , Ageusia/fisiopatologia , Ageusia/epidemiologia , Transtornos do Olfato/epidemiologia , Anosmia/fisiopatologia , Percepção Gustatória/fisiologia
6.
Anim Sci J ; 89(2): 441-447, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29178505

RESUMO

The elucidation of the mechanisms underlying the taste sense of chickens will contribute to improvements in poultry feeding, because the molecular mechanism of chickens' taste sense defines the feeding behavior of chickens. Here we focused on the gene expressions in two different oral tissues of chickens - the palate, which contains many taste buds, and the tongue tip, which contains few taste buds. Using the quantitative real-time polymerase chain reaction method, we found that the molecular markers for taste buds of chickens, that is α-gustducin and vimentin, were expressed significantly highly in the palate compared to the tongue tip. Our analyses also revealed that transient receptor potential subfamily M member 5 (TRPM5), a cation channel involved in taste transduction in mammals, was also highly expressed in the palate compared to the tongue tip. Our findings demonstrated that the expression patterns of these genes were significantly correlated. We showed that the aversion to bitter solution was alleviated by a TRPM5 inhibitor in behavior of chickens. Taken together, our findings enabled us to develop a simple method for screening taste-related genes in chickens. The use of this method demonstrated that TRPM5 was involved in chickens' taste transduction, and that a TRPM5 inhibitor can alleviate chickens' bitter taste perception of feed ingredients.


Assuntos
Galinhas/fisiologia , Expressão Gênica , Palato/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/fisiologia , Paladar/genética , Língua/metabolismo , Animais , Comportamento Alimentar , Reação em Cadeia da Polimerase em Tempo Real , Paladar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA