Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 122(18): 14471-14553, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35960550

RESUMO

Block copolymers form the basis of the most ubiquitous materials such as thermoplastic elastomers, bridge interphases in polymer blends, and are fundamental for the development of high-performance materials. The driving force to further advance these materials is the accessibility of block copolymers, which have a wide variety in composition, functional group content, and precision of their structure. To advance and broaden the application of block copolymers will depend on the nature of combined segmented blocks, guided through the combination of polymerization techniques to reach a high versatility in block copolymer architecture and function. This review provides the most comprehensive overview of techniques to prepare linear block copolymers and is intended to serve as a guideline on how polymerization techniques can work together to result in desired block combinations. As the review will give an account of the relevant procedures and access areas, the sections will include orthogonal approaches or sequentially combined polymerization techniques, which increases the synthetic options for these materials.


Assuntos
Elastômeros , Polímeros , Elastômeros/química , Polimerização , Polímeros/química
2.
Macromol Rapid Commun ; 45(8): e2300675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38163327

RESUMO

Despite their industrial ubiquity, polyolefin-polyacrylate block copolymers are challenging to synthesize due to the distinct polymerization pathways necessary for respective blocks. This study utilizes MILRad, metal-organic insertion light-initiated radical polymerization, to synthesize polyolefin-b-poly(methyl acrylate) copolymer by combining palladium-catalyzed insertion-coordination polymerization and atom transfer radical polymerization (ATRP). Brookhart-type Pd complexes used for the living polymerization of olefins are homolytically cleaved by blue-light irradiation, generating polyolefin-based macroradicals, which are trapped with functional nitroxide derivatives forming ATRP macroinitiators. ATRP in the presence of Cu(0), that is, supplemental activators and reducing agents , is used to polymerize methyl acrylate. An increase in the functionalization efficiency of up to 71% is demonstrated in this study by modifying the light source and optimizing the radical trapping condition. Regardless of the radical trapping efficiency, essentially quantitative chain extension of polyolefin-Br macroinitiator with acrylates is consistently demonstrated, indicating successful second block formation.


Assuntos
Resinas Acrílicas , Polienos , Polimerização , Polienos/química , Polienos/síntese química , Resinas Acrílicas/química , Resinas Acrílicas/síntese química , Catálise , Polímeros/química , Polímeros/síntese química , Paládio/química , Estrutura Molecular , Acrilatos/química , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA