Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt B): 112089, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571032

RESUMO

Lack of process control between the two stages of a combined microbial fuel cell-membrane bioreactor (MFC-MBR) system limits its application in wastewater treatment due to membrane fouling and high energy consumption. In this study, a two-stage MFC-MBR integrated system was established to investigate the impact of incorporating process control on petroleum refinery wastewater treatment. The results showed that chemical oxygen demand (COD) removal exhibits a linear relationship with the MFC voltage output (R2 = 0.9821); therefore, the MFC was used as a biosensor to control the combined system. The removal efficiencies of COD, ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 96.3%, 92.4%, and 86.6%, respectively, in the MFC-MBR biosensor, whereas those in the control system were 74.7%, 71.2%, and 64.7% respectively. Furthermore,using the biosensor control system yielded a 50% reduction in the transmembrane pressure (1.01 kPa day-1) and decreased membrane fouling in wastewater treatment. The maximum energy recovery of the biosensor system (0.00258 kWh m-3) was five times higher than that of the control system, as determined by calculating the mass balance of the system. Thus, this study indicates that using the MFC as a biosensor for process control in an MFC-MBR system can improve overall system performance.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Purificação da Água , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Membranas Artificiais , Águas Residuárias
2.
J Environ Manage ; 270: 110913, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721347

RESUMO

Emerging contaminants (ECs) are synthetic organic chemicals that released into the environment, which pose a serious threat to the ecosystem and human health. Due to the high costs of physicochemical methods and the possibility of secondary pollution, and conventional biological treatment techniques are not efficient to remove ECs. Thus, there is a need to develop novel technologies to treat ECs. Anaerobic digestion (AD) is reported to degrade most ECs. Anaerobic membrane bioreactor (AnMBR) is an upgraded AD technology that has high system stability and microbial community abundance. The biogas production and EC biodegradation efficiency in the AnMBR system are markedly higher than those in the traditional AD system. In recent years, AnMBR is widely used to remove environmental ECs. This review analyzes the feasibility and challenges of AnMBR in the treatment of ECs and provides useful insights for improving the performance and efficiency of AnMBR to treat ECs.


Assuntos
Ecossistema , Águas Residuárias , Anaerobiose , Biocombustíveis , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos
3.
Ecotoxicol Environ Saf ; 169: 335-343, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30458400

RESUMO

An effective bioaugmentation strategy was developed for the removal of alcohol ethoxylates (AEs) from municipal wastewater. An AE-degrading strain, Pseudomonas sp. LZ-B, was isolated from an activated sludge. Strain LZ-B was able to degrade 96.8% of 200 mg/L C12E4 (Brij 30) within 24 h and showed significant biomass increase and removal of total oxygen concentration (TOC). The optimal degradation temperature and pH value were 37 °C and 6.0, respectively. The strain demonstrated greater potential to degrade five different molecular weight AEs within 5 days. HPLC-MS/MS analysis demonstrated that the major metabolites obtained were polyethylene glycol (PEG) and carboxylated AE chains. Activated sludge has a low ability to remove AEs. After inoculation of strain LZ-B into the activated sludge reactor, Strain LZ-B successfully colonized the activated sludge, and AE removal efficiency increased to more than 95% when the hydraulic retention time (HRT) was 10 h. After strain LZ-B cleaved the AE chains, the sludge microbial communities easily removed PEG fragments to facilitate complete biodegradation of AEs. This is the first report describing bioaugmentation to increase AE degradation in an activated sludge system.


Assuntos
Reatores Biológicos/microbiologia , Polidocanol/análise , Pseudomonas/crescimento & desenvolvimento , Esgotos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biomassa , Pseudomonas/isolamento & purificação , Esgotos/microbiologia , Águas Residuárias/química
4.
J Hazard Mater ; 474: 134838, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850944

RESUMO

Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.


Assuntos
Carvão Vegetal , Hidrolases , Fósforo , Polietilenotereftalatos , Microbiologia do Solo , Poluentes do Solo , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Fósforo/metabolismo , Fósforo/química , Microplásticos/toxicidade , Biodegradação Ambiental , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
5.
Sci Total Environ ; 927: 172386, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604360

RESUMO

Fiber film have received widespread attention due to its green friendliness. We can use microorganisms to degrade lignin in straw to obtain cellulose and make fiber films. Herein, a group of high-temperature (50 °C) lignin degrading bacterial consortium (LDH) was enriched and culture conditions for lignin degradation were optimized. Combined with high-throughput sequencing technology, the synergistic effect of LDH-composited bacteria was analyzed. Then LDH was used to treat rice straw for the bio-pulping experiment. The results showed that the lignin of rice straw was degraded 32.4 % by LDH at 50 °C for 10 d, and after the optimization of culture conditions, lignin degradation rate increased by 9.05 % (P < 0.001). The bacteria that compose in LDH can synergistically degrade lignin. Paenibacillus can encode all lignin-degrading enzymes present in the LDH. Preliminary tests of LDH in the pulping industry have been completed. This study is the first to use high temperature lignin degrading bacteria to fabricate fiber film.


Assuntos
Lignina , Oryza , Lignina/metabolismo , Biodegradação Ambiental , Consórcios Microbianos/fisiologia , Bactérias/metabolismo , Celulose/metabolismo
6.
Microbiome ; 11(1): 98, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147715

RESUMO

BACKGROUND: Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS). RESULTS: T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability. CONCLUSIONS: The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Poliestirenos/metabolismo , Tenebrio/metabolismo , Larva , Microbioma Gastrointestinal/fisiologia , Lignina/metabolismo , Zea mays/metabolismo , Escherichia coli/metabolismo , Plásticos/metabolismo , Dieta
7.
Sci Total Environ ; 646: 606-617, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30059921

RESUMO

Petroleum refinery wastewater (PRW) treatments based on biofilm membrane bioreactor (BF-MBR) technology is an ideal approach and biofilm supporting material is a critical factor. In this study, BF-MBR with nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as a biofilm support was used to treat PRW with a hydraulic retention time of 5 h. The removal rate of 500 mg/L chemical oxygen demand (COD), 15 mg/L NH4+ and 180 NTU of turbidity were 99.73%, 97.48% and 99.99%, which were 23%, 20%, and 6% higher than in the control bioreactor, respectively. These results were comparatively higher than that observed for the sequencing batch reactor (SBR). The death rate of the Spirodela polyrrhiza (L.) irrigated with BF-MBR-treated water was 4.44%, which was similar to that of the plants irrigated with tap water (3.33%) and SBR-treated water (5.56%), but significantly lower than that irrigated with raw water (84.44%). The counts demonstrated by qPCR for total bacteria, denitrifiers, nitrite oxidizing bacteria, ammonia oxidizing bacteria, and ammonia-oxidizing archaea were also higher in BF-MBR than those obtained by SBR. Moreover, the results of 16 s rRNA sequencing have demonstrated that the wastewater remediation microbes were enriched in AT/HUFs, e.g., Acidovorax can degrade polycyclic aromatic hydrocarbons, and Sulfuritalea is an efficient nitrite degrader. In summary, BF-MBR using AT/HUF as a biofilm support improves microbiome of the actived sludge and is reliable for oil-refinery wastewater treatment.


Assuntos
Reatores Biológicos/microbiologia , Compostos de Magnésio/química , Compostos de Silício/química , Uretana/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Biofilmes/crescimento & desenvolvimento , Argila/química , Membranas Artificiais , Águas Residuárias/microbiologia , Purificação da Água
8.
Bioresour Technol ; 269: 557-566, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219494

RESUMO

Lignin compound wastes are generated as a result of agricultural and industrial practices. Microorganism-mediated bio-catalytic processes can depolymerize and utilize lignin eco-friendly. Although fungi have been studied since several decades for their ability to depolymerize lignin, strict growth conditions of fungus limit it's industrial application. Compared with fungi, bacteria can tolerate wider pH, temperature, oxygen ranges and are easy to manipulate. Several studies have focused on bacteria involved in the process of lignin depolymerization and utilization. Pseudomonas have been used for paper mill wastewater treatment while Rhodococcus are widely reported to accumulate lipid. In this review, the recent studies on bacterial utilization in paper wastewater treatment, lignin conversion to biofuels, bioplastic, biofertilizers and other value-added chemicals are summarized. As bacteria possess remarkable advantages in industrial production, they may play a promising role in the future commercial lignin utilization.


Assuntos
Bactérias/metabolismo , Biocombustíveis , Lignina/metabolismo , Catálise , Polimerização
9.
Sci Rep ; 6: 33628, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641709

RESUMO

The effects of cabbage waste (CW) addition on methane production in cow dung and corn straw co-fermentation systems were investigated. Four experimental groups, each containing 55 g of substrate, were set up as follows: 100% cow dung (C); 36% cabbage and 64% cow dung (CC); 36% straw and 64% cow dung (SC); and 18% cabbage, 18% straw, and 64% cow dung (CSC). After seven days of fermentation, the maximum methane yield was 134 mL in the CSC group, which was 2.81-fold, 1.78-fold, and 1340-fold higher than that obtained in the CC, SC, and C groups, respectively. CW treatment of the CSC group enhanced cellulase activity and enriched culturable cellulose-degrading bacterial strains. Miseq sequencing data revealed that the predominant phylum in the CSC group was Bacteroidetes, which contains most of the cellulose-degrading bacteria. Our results suggested that CW treatment elevated cellulose degradation and promoted methane production.


Assuntos
Brassica , Celulose , Fermentação , Metano/biossíntese , Resíduos , Zea mays , Anaerobiose , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Biodiversidade , Bovinos , Celulase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA