Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 557: 506-518, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542691

RESUMO

Curcumin is a polyphenolic compound found in turmeric (Curcuma longa) rhizome that has potential biological benefits, including antioxidant, antimicrobial, anti-inflammatory, and anti-cancer activity. Incorporation of curcumin into functional food and beverage products, however, is challenging due to its low water-solubility, poor chemical stability, rapid metabolism, and low oral bioavailability. Researchers are, therefore developing a suite of particle-based delivery systems to maximize the potential health benefits of curcumin. Colloidal delivery systems, such as micelles, microemulsions, nanoemulsions, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, biopolymer nanoparticles, and microgels have all been developed for this purpose. The functional performance of each of these delivery systems depends on its structure and physicochemical properties, such as particle composition, particle size, morphology, physicochemical stability, optical properties, rheology, and sensory attributes. As a result, each delivery system has its advantages and disadvantages for particular applications. Consequently, a delivery system must be specifically designed for the particular bioactive agent to be encapsulated, as well as the particular food matrix it will be incorporated into. In this review, we highlight the potential of the Delivery by Design (DbD) approach for identifying and selecting the most appropriate colloidal delivery system for a particular food application, using curcumin as a model bioactive agent.


Assuntos
Antineoplásicos/química , Curcumina/química , Suplementos Nutricionais , Nanocápsulas/química , Animais , Antineoplásicos/farmacologia , Biopolímeros/química , Curcumina/farmacologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões/química , Humanos , Lipídeos/química , Lipossomos , Micelas , Reologia , Solubilidade , Água
2.
Food Res Int ; 111: 178-186, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007674

RESUMO

Oral ingestion of curcumin is claimed to be effective against several diseases, including inflammation and cancer. However, its utilization in food, supplement, and pharmaceutical products is often challenging due to its poor water solubility, high chemical instability, and limited oral bioavailability. Emulsion-based delivery systems can be designed to overcome these challenges, but their composition and structure must be optimized to ensure they function appropriately. This study examined the impact of emulsifier type on the formation and stability of curcumin-loaded oil-in-water emulsions: sodium caseinate; Tween 80; quillaja saponin; gum arabic. The effectiveness of these food-grade emulsifiers at forming emulsions by microfluidization was characterized in terms of their surface load, i.e., the mass of emulsifier per unit surface area. The surface loads decreased in the following order: gum arabic (55.3 mg/m2) > > saponins (2.0 mg/m2) > Tween 80 (1.6 mg/m2) > caseinate (1.5 mg/m2), which indicated that much more gum arabic was required to form emulsions than the other emulsifiers. Curcumin-loaded emulsions were then prepared under conditions where there was just enough emulsifier to cover the droplet surfaces ("critical"), and under conditions where there was an excess of emulsifier in the aqueous phase ("excess"). Initially, both critical and excess emulsions were physically stable and had similar appearances. In all emulsions, curcumin degradation during storage occurred more rapidly at pH 7 than at pH 3, and was faster at 55 °C than at 37 °C. The physical and chemical stability of the curcumin-loaded emulsions also depended on emulsifier type. After storage at 55 °C for 15 days, the extent of curcumin degradation decreased in the following order: saponins > > gum arabic ≈ casinate ≈ Tween 80. Moreover, droplet creaming was observed in the critical Tween 80 and saponin emulsions, but not in the other emulsions. These results suggest that saponin accelerated curcumin degradation, possibly due to its ability to promote peroxidation reactions. Emulsifier concentration did not significantly affect curcumin degradation. These results suggest that the physical and chemical stability of curcumin-loaded emulsions is influenced by emulsifier type and level. This information may be useful for formulating emulsion-based delivery systems for curcumin with improved physicochemical and functional properties.


Assuntos
Curcumina/química , Emulsificantes/química , Caseínas/química , Curcumina/análise , Emulsões , Goma Arábica/química , Concentração de Íons de Hidrogênio , Polissorbatos/química , Saponinas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA