Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Macro Lett ; 10(11): 1371-1376, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35549010

RESUMO

While piezoelectric materials are applied in various fields, they generally exhibit poor mechanical toughness. To increase the applicability of these, their mechanical properties need to be improved. In this study, a tough piezoelectric polyrotaxane (PRX) elastomer was developed by blending PRX samples of two different lengths, formed using 10K and 35K poly(ethylene glycol), to align dipole moments for optimization of the piezoelectricity characteristics. The effects of the blending ratio on the crystalline structure of the obtained PRX elastomer were investigated by X-ray diffraction analysis and transmission electron microscopy. In addition, the ferroelectric and piezoelectric properties of the PRX elastomer were evaluated based on its polarization hysteresis loop and voltage generation characteristics, respectively. The PRX elastomer formed by using a ratio of 3:1 (ePR10k7535k25) exhibited a long-range-ordered anisotropic crystalline structure, resulting in a large polarization (Pr) value. As a result, ePR10k7535k25 showed greatly enhanced piezosensitivity against the mechanical vibrations generated by respiratory signals.


Assuntos
Rotaxanos , Anisotropia , Elastômeros/química , Polietilenoglicóis/química , Rotaxanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA