Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2211416120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595665

RESUMO

Soft systems that respond to external stimuli, such as heat, magnetic field, and light, find applications in a range of fields including soft robotics, energy harvesting, and biomedicine. However, most of the existing systems exhibit nondirectional, nastic movement as they can neither grow nor sense the direction of stimuli. In this regard, artificial systems are outperformed by organisms capable of directional growth in response to the sense of stimuli or tropic growth. Inspired by tropic growth schemes of plant cells and fungal hyphae, here we report an artificial multistimuli-responsive tropic tip-growing system based on nonsolvent-induced phase separation of polymer solution, where polymer precipitates as its solvent dissolves into surrounding nonsolvent. We provide a theoretical framework to predict the size and velocity of growing precipitates and demonstrate its capability of sensing the directions of gravity, mechanical contact, and light and adjusting its growing direction in response. Exploiting the embedded physical intelligence of sensing and responding to external stimuli, our soft material system achieves multiple tasks including printing 3D structures in a confined space, bypassing mechanical obstacles, and shielded transport of liquids within water.


Assuntos
Células Vegetais , Polímeros , Gravitação
2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431685

RESUMO

Mud nests built by swallows (Hirundinidae) and phoebes (Sayornis) are stable granular piles attached to cliffs, walls, or ceilings. Although these birds have been observed to mix saliva with incohesive mud granules, how such biopolymer solutions provide the nest with sufficient strength to support the weight of the residents as well as its own remains elusive. Here, we elucidate the mechanism of strong granular cohesion by the viscoelastic paste of bird saliva through a combination of theoretical analysis and experimental measurements in both natural and artificial nests. Our mathematical model considering the mechanics of mud nest construction allows us to explain the biological observation that all mud-nesting bird species should be lightweight.


Assuntos
Comportamento de Nidação/fisiologia , Passeriformes/fisiologia , Saliva/fisiologia , Andorinhas/fisiologia , Animais , Modelos Teóricos
3.
Int Endod J ; 56(6): 765-774, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36825362

RESUMO

AIM: To evaluate the efficacy of a novel ultrasonic irrigation device, remotely-generated irrigation with a non-invasive sound field enhancement (RINSE) system, in removing biofilm-mimicking hydrogel from a simulated isthmus model and compare it with sonically- and ultrasonically-activated irrigation systems. METHODOLOGY: A polycarbonate root canal model containing two standardized root canals (apical diameter of 0.20 mm, 4% taper, 18 mm long with a coronal reservoir) connected by three isthmuses (0.40 mm deep, 2 mm high, 4 mm long) was used as the test model. The isthmuses were filled with a hydroxyapatite powder-containing hydrogel. The canals were filled with irrigant, and the models were randomly assigned to the following activation groups (n = 15): EndoActivator (EA), ultrasonically activated irrigation (UAI), and RINSE system (RS). Syringe irrigation (SI) with a 30G needle served as the control. Standardized images of the isthmuses were taken before and after irrigation, and the amount of hydrogel removed was determined using image analysis software and compared across groups using anova (p < .05). RESULTS: Hydrogel removal was significantly higher with the RS (83.7%) than with UAI, EA, or SI (p ≤ .01). UAI (69.2%) removed significantly more hydrogel than SI and EA (p < .05), while there was no significant difference between SI (24.3%) and EA (25.7%) (p = .978). CONCLUSIONS: RINSE system resulted in the most hydrogel removal, performing better than UAI or EA. The effect of RS was also not reliant on the insert or tip entering the pulp chamber or root canal, making it particularly useful in conservative endodontics.


Assuntos
Cavidade Pulpar , Tratamento do Canal Radicular , Ondas Ultrassônicas , Biofilmes/efeitos da radiação , Cavidade Pulpar/microbiologia , Cavidade Pulpar/efeitos da radiação , Hidrogéis , Irrigantes do Canal Radicular , Preparo de Canal Radicular , Hipoclorito de Sódio , Irrigação Terapêutica/métodos , Modelos Anatômicos , Tratamento do Canal Radicular/instrumentação , Tratamento do Canal Radicular/métodos
4.
Soft Matter ; 17(32): 7554-7564, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34337636

RESUMO

Materials that transform shapes responding to external stimuli can bring unprecedented innovations to soft matter physics, soft robotics, wearable electronics, and architecture. As most conventional soft actuation technologies induce large deformations only in a preprogrammed manner at designated locations, the material systems capable of agile reversible deformations without prescribed patterns are strongly desired for versatile mechanical morphing systems. Here we report a morphable liquid interface coated with dielectric particles, or a particle raft, which can reversibly change its topography under an external electric field. The rafts change from flat floors to towers within seconds, and the morphed structures are even capable of horizontal translation. Our experiments and theory show that the raft deformation is driven by electrostatic attraction between particles and electrodes, while being modulated by electric discharge. A broad range of materials serving as electrodes, e.g., human fingers and transparent polymers, suggests this system's diverse applications, including the human-machine interface and the three-dimensional physical display.


Assuntos
Polímeros , Robótica , Eletrodos , Eletrônica , Humanos , Microdomínios da Membrana
5.
J Mech Behav Biomed Mater ; 150: 106156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041883

RESUMO

INTRODUCTION: To develop a calcium silicate (CaSi)-based cement containing dimethyl sulfoxide (DMSO) and cement deliver device for new root canal filling technique, and to assess the flow behavior, leakage, and root canal filling quality of CaSi containing DMSO. METHODS: CaSi containing DMSO (CSC-DMSO) and CaSi containing PEG (CSC-PEG) were prepared, and the flow characteristics of both cements were compared in gypsum and resin channels using a high-speed camera. Eight root canals were obturated by CSC-DMSO or CSC-PEG using a cement delivery device, and root canal filling quality was assessed in terms of filling length using periapical radiographs. The filling length was evaluated by 'apico-coronal extension,' measuring length in reference to apical constriction. Microleakage was measured for thirty human molars that were randomly filled with CSC-DMSO, CSC-PEG, or gutta-percha and AH plus. Preliminary obturation of CSC-DMSO with cement delivery device in human teeth was analyzed in terms of filling length and void, using periapical radiographs. Statistical analysis was performed with the Kruskal Wallis test for simulated root canal fillings and one-way ANOVA for leakage test. RESULTS: The flow speed of CSC-DMSO reduced in gypsum channels compared to resin channels, but CSC-PEG did not exhibit significant differences in the channels. The median absolute value of apico-coronal extension was significantly lower in CSC-DMSO compared to CSC-PEG (p < 0.05). Microleakage did not statistically differ between the groups (p > 0.05). In the preliminary obturation, the mean apico-coronal extension of CSC-DMSO was -0.297 ± 0.724 mm, while CSC-PEG was not feasible due to excess apical extrusions. CONCLUSIONS: CSC-DMSO could be considered as an alternative filling material for root canal obturation.


Assuntos
Materiais Restauradores do Canal Radicular , Humanos , Materiais Restauradores do Canal Radicular/farmacologia , Dimetil Sulfóxido , Cavidade Pulpar , Cálcio , Sulfato de Cálcio , Cimentos de Ionômeros de Vidro , Resinas Epóxi
6.
Ultrason Sonochem ; 90: 106168, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137469

RESUMO

Root canal treatment is performed to remove the bacteria proliferating in the root canals of a tooth. Many conventional root canal irrigation methods use an instrument inserted into the root canals. However, bacteria removal is often incomplete in the apical region of the root canal, and the treatment carries clinical risks, such as instrument fracture and extrusion of irrigation liquid through the canal apex. We here suggest a novel, remotely generated high-intensity ultrasound irrigation system that exhibits better irrigation performance and a reduced clinical risk. Our device employs powerful ultrasonic waves generated by a transducer placed outside a target tooth. The generated ultrasonic waves are guided to travel into the root canals. In the root canals of the target tooth, acoustic cavitation occurs, and vapor bubbles are created. The dynamic motions of vapor bubbles create remarkable cleaning effects. Using root canal models, we tested the cleaning performance of the proposed system and compared it with other conventional irrigation methods. The results revealed that biofilm in the apical region of the root canal models can be removed exclusively using the proposed system, thus demonstrating an improvement in cleaning performance. We also measured pressure at the apex of the root canals of an extracted tooth while operating the proposed system. Our system exhibited a smaller pressure compared to the syringe irrigation method, thus suggesting a reduced risk of apical extrusion of the irrigation liquid. Since the proposed system operates without inserting instruments into the root canal, it can clean multiple root canals in a tooth simultaneously with a single treatment. The proposed device would be a breakthrough in root canal treatment in terms of irrigation performance, clinical safety, and ease of treatment.


Assuntos
Irrigantes do Canal Radicular , Preparo de Canal Radicular , Preparo de Canal Radicular/métodos , Ápice Dentário , Cavidade Pulpar , Irrigação Terapêutica/métodos , Hipoclorito de Sódio
7.
Lab Chip ; 18(16): 2433-2440, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29999064

RESUMO

Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate. Cell containing gels can be sequentially patterned by capillary-guided flow along the corner and narrow gaps designed within the 96-well form factor. Compared to PDMS-based hydrophobic burst valve designs, this work utilizes hydrophilic liquid guides to obtain rapid and reproducible patterned gels for co-cultures. When a liquid droplet (i.e. cell containing fibrin or collagen gel) is placed on a corner, spontaneous patterning is achieved within 1 second. Optimal dimensionless parameters required for successful capillary loading have been determined. To demonstrate the utility of the platform for 3D co-culture, angiogenesis experiments were performed by patterning HUVEC (human umbilical endothelial cells) and LF (lung fibroblasts) embedded in 3D fibrin gels. The angiogenic sprouts (with open lumen tip cells expressing junctional proteins) are comparable to those observed in PDMS based devices. The IMPACT device has the potential to provide a robust high-throughput experimental platform for vascularized microphysiological systems.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Plásticos , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Injeções , Neovascularização Fisiológica
8.
J Biomed Mater Res A ; 105(2): 363-376, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27643840

RESUMO

Polycaprolactone (PCL) is a biodegradable polyester that is bioresorbable and biocompatible, and is widely used in medical fields. This study examines in vitro and in vivo osteogenic activities of cultured human periosteum-derived osteoblasts (POs) seeded into growth factor (bone morphogenic protein 2 [BMP-2] or vascular endothelial growth factor [VEGF])-releasing scaffolds of PCL beads coated with Pluronic F127. Each growth factor immobilized in the PCL/F127 is cumulatively released from the beads for more than 40 days (up to 3.04 ± 0.08 ng mg-1 BMP-2 and 3.41 ± 0.18 ng mg-1 VEGF in 42 days). Long-term (∼2 years) experimental results obtained in a miniature pig model suggest that POs seeded into BMP-2 + VEGF-releasing PCL/P-F127 beads are the most effective for bone repair. In in vitro assays, osteogenic activities were higher in POs seeded into BMP-2-releasing PCL/Pluronic F127 beads at earlier time points and in POs seeded into BMP-2 + VEGF-releasing PCL/Pluronic F127 beads at later time points. These results suggest that the combination of BMP-2 and VEGF more sufficiently stimulates (in particular at late time points) osteoblast differentiation of POs seeded in the PCL/F127 in vitro and in vivo, and thus allows effective bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 363-376, 2017.


Assuntos
Proteína Morfogenética Óssea 2/química , Osteoblastos/metabolismo , Osteogênese , Periósteo/metabolismo , Poloxâmero/química , Poliésteres/química , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/química , Animais , Feminino , Humanos , Masculino , Osteoblastos/citologia , Periósteo/citologia , Suínos , Porco Miniatura
9.
Korean J Orthod ; 46(6): 386-394, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27896213

RESUMO

OBJECTIVE: The objective of the study was to evaluate the practicality and the validity of different surface treatments of self-drilling orthodontic mini-implants (OMIs) by comparing bone cutting capacity and osseointegration. METHODS: Self-drilling OMIs were surface-treated in three ways: Acid etched (Etched), resorbable blasting media (RBM), partially resorbabla balsting media (Hybrid). We compared the bone cutting capacity by measuring insertion depths into artificial bone (polyurethane foam). To compare osseointegration, OMIs were placed in the tibia of 25 rabbits and the removal torque value was measured at 1, 2, 4, and 8 weeks after placement. The specimens were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). RESULTS: The bone cutting capacity of the etched and hybrid group was lower than the machined (control) group, and was most inhibited in the RBM group (p < 0.05). At 4 weeks, the removal torque in the machined group was significantly decreased (p < 0.05), but was increased in the etched group (p < 0.05). In the hybrid group, the removal torque significantly increased at 2 weeks, and was the highest among all measured values at 8 weeks (p < 0.05). The infiltration of bone-like tissue surface was evaluated by SEM, and calcium and phosphorus were detected via EDS only in the hybrid group. CONCLUSIONS: Partial RBM surface treatment (hybrid type in this study) produced the most stable self-drilling OMIs, without a corresponding reduction in bone cutting capacity.

10.
Integr Comp Biol ; 54(6): 1034-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24760793

RESUMO

We present the results of a combined experimental and theoretical investigation of the mechanics of self-burial of some plant seeds whose morphologies respond to environmental changes in humidity. The seeds of Erodium and Pelargonium have hygroscopically responsive awns that play a critical role in their self-burial into soil. The awn, coiled in a dry state, uncoils to stretch linearly under highly humid condition because of a tilted arrangement of cellulose microfibrils in one of the layers of the awn's bilayered structure. By measuring the mechanical characteristics of the awns of Pelargonium carnosum, we find that the extensional force of the awn can be aptly modeled by the theory of elasticity for a coiled spring. We further show that although the resistance to the seed-head penetrating relatively coarse soils without spinning is large enough to block the digging seed, the rotation of the seed greatly reduces the soil's resistance down to a level the awn can easily overcome. Our mechanical analysis reveals that the self-burial of the seed is a sophisticated outcome of the helically coiled configuration of the awn.


Assuntos
Modelos Biológicos , Pelargonium , Sementes/anatomia & histologia , Solo , Molhabilidade , Fenômenos Biomecânicos , Celulose/química , Elasticidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA