Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 222: 113068, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36481509

RESUMO

This manuscript examines influences of differently functionalized surfaces on the formation of solution-dispersed polydopamine (pDA). Glass vials functionalized with different functional groups provided a set of conditions with which the relationship between the area of active surface and the rate of pDA formation could be systematically studied. The results suggest that charged and polar surfaces accelerate pDA formation in solution, with the effect of -NH2 surfaces being exceptionally strong. In the vials, pDA formed as both forms of dispersions in solution and films at solid-liquid interface. Further analyses confirmed that both forms of pDA formed with -NH2 surfaces were chemically similar to conventional pDA synthesized without help of functional surfaces. Among short peptide-based amyloid fibers with defined surface functional groups, and those displaying lysines (-NH2) greatly accelerated the formation of pDA, consistent with the results of -NH2-functionalized vials. The results suggest that pDA formation may be facilitated by surface functional groups of solid-liquid interfaces, and have implications for the overlooked roles of amyloid fibers in biological melanogenesis.


Assuntos
Indóis , Polímeros , Peptídeos
2.
ACS Nano ; 13(11): 13293-13303, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31687810

RESUMO

Human voice recognition systems (VRSs) are a prerequisite for voice-controlled human-machine interfaces (HMIs). In order to avoid interference from unexpected background noises, skin-attachable VRSs are proposed to directly detect physiological mechanoacoustic signals based on the vibrations of vocal cords. However, the sensitivity and response time of existing VRSs are bottlenecks for efficient HMIs. In addition, water-based contaminants in our daily lives, such as skin moisture and raindrops, normally result in performance degradation or even functional failure of VRSs. Herein, we present a skin-attachable self-cleaning ultrasensitive and ultrafast acoustic sensor based on a reduced graphene oxide/polydimethylsiloxane composite film with bioinspired microcracks and hierarchical surface textures. Benefitting from the synergetic effect of the spider-slit-organ-like multiscale jagged microcracks and the lotus-leaf-like hierarchical structures, our superhydrophobic VRS exhibits an ultrahigh sensitivity (gauge factor, GF = 8699), an ultralow detection limit (ε = 0.000 064%), an ultrafast response/recovery behavior, an excellent device durability (>10 000 cycles), and reliable detection of acoustic vibrations over the audible frequency range (20-20 000 Hz) with high signal-to-noise ratios. These superb performances endow our skin-attachable VRS with anti-interference perception of human voices with high precision even in noisy environments, which will expedite the voice-controlled HMIs.


Assuntos
Acústica , Aprendizado de Máquina , Pele/metabolismo , Voz , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/metabolismo , Grafite/química , Grafite/metabolismo , Humanos , Pele/química , Propriedades de Superfície
3.
Sci Rep ; 9(1): 16535, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712675

RESUMO

Immune damages on the peripheral myelin sheath under pro-inflammatory milieu result in primary demyelination in inflammatory demyelinating neuropathy. Inflammatory cytokines implicating in the pathogenesis of inflammatory demyelinating neuropathy have been used for the development of potential biomarkers for the diagnosis of the diseases. In this study, we have found that macrophages, which induce demyelination, expressed a B-cell-recruiting factor CXC chemokine ligand 13 (CXCL13) in mouse and human inflammatory demyelinating nerves. The serum levels of CXCL13 were also higher in inflammatory demyelinating neuropathic patients but not in acute motor axonal neuropathy or a hereditary demyelinating neuropathy, Charcot-Marie-Tooth disease type 1a. In addition, CXCL13-expressing macrophages were not observed in the sciatic nerves after axonal injury, which causes the activation of innate immunity and Wallerian demyelination. Our findings indicate that the detection of serum CXCL13 will be useful to specifically recognize inflammatory demyelinating neuropathies in human.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Quimiocina CXCL13/sangue , Doenças Desmielinizantes/sangue , Doenças Desmielinizantes/imunologia , Doenças do Sistema Nervoso Periférico/sangue , Doenças do Sistema Nervoso Periférico/imunologia , Animais , Biomarcadores , Citocinas/sangue , Citocinas/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso Periférico/patologia
4.
Biomaterials ; 32(3): 899-908, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21035846

RESUMO

High mobility group box 1 (HMGB1) is a family of endogenous molecules that is released by necrotic cells and causes neuronal damages by triggering inflammatory processes. In the cerebral ischemic brain, sustained and regulated suppression of HMGB1 has been emerged as a therapeutic means to grant neuroprotection. HMGB1 consists of two HMG boxes (A and B) and an acidic C-terminal tail, and the A box peptide antagonistically competes with HMGB1 for its receptors. In the middle cerebral artery occlusion (MCAO) in rats, a murine model of transient cerebral ischemia, administration of HMGB1 A box intraparenchymally, after encapsulated in biodegradable gelatin microspheres (GMS), which enhances the stability of peptide inside and allows its sustained delivery, at 1 h, 3 h, or 6 h after MCAO, reduced mean infarct volumes by, respectively, 81.3%, 42.6% and 30.7% of the untreated MCAO-brain, along with remarkable improvement of neurological deficits. Furthermore, the administration of HMGB1 A box/GMS suppressed proinflammatory cytokine inductions more strongly than the injection of non-encapsulated HMGB1 A box. Given that insulted brains-like ischemia have enhanced gelatinase activity than the normal brain, our results suggest that GMS-mediated delivery of therapeutic peptides is a promising means to provide efficient neuroprotection in the postischemic brain.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Proteína HMGB1/uso terapêutico , Ataque Isquêmico Transitório/tratamento farmacológico , Microesferas , Animais , Materiais Biocompatíveis/administração & dosagem , Encéfalo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Proteína HMGB1/administração & dosagem , Imuno-Histoquímica , Ataque Isquêmico Transitório/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
J Control Release ; 142(3): 422-30, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19944723

RESUMO

Although RNA interference (RNAi)-mediated gene silencing provides a powerful strategy for modulating specific gene functions, difficulties associated with siRNA delivery have impeded the development of efficient therapeutic applications. In particular, the efficacy of siRNA delivery into neurons has been limited by extremely low transfection efficiencies. e-PAM-R is a biodegradable arginine ester of PAMAM dendrimer, which is readily degradable under physiological conditions (pH 7.4, 37 degrees C). In the present study, we investigated the efficiency of siRNA delivery by e-PAM-R in primary cortical cultures and in rat brain. e-PAM-R/siRNA complexes showed high transfection efficiencies and low cytotoxicities in primary cortical cultures. Localization of fluorescence-tagged siRNA revealed that siRNA was delivered not only into the nucleus and cytoplasm, but also along the processes of the neuron. e-PAM-R/siRNA complex-mediated target gene reduction was observed in over 40% of cells and it was persistent for over 48 h. The potential use of e-PAM-R was demonstrated by gene knockdown after transfecting High mobility group box-1 (HMGB1, a novel cytokine-like molecule) siRNA into H(2)O(2)- or NMDA-treated primary cortical cultures. In these cells, HMGB1 siRNA delivery successfully reduced both basal and H(2)O(2)- or NMDA-induced HMGB1 levels, and as a result of that, neuronal cell death was significantly suppressed in both cases. Furthermore, we showed that e-PAM-R successfully delivered HMGB1 siRNA into the rat brain, wherein HMGB1 expression was depleted in over 40% of neurons and astrocytes of the normal brain. Moreover, e-PAM-R-mediated HMGB1 siRNA delivery notably reduced infarct volume in the postischemic rat brain, which is generated by occluding the middle cerebral artery for 60 min. These results indicate that e-PAM-R, a novel biodegradable nonviral gene carrier, offers an efficient means of transfecting siRNA into primary neuronal cells and in the brain and of performing siRNA-mediated gene knockdown.


Assuntos
Materiais Biocompatíveis/química , Isquemia Encefálica/terapia , Córtex Cerebral/efeitos dos fármacos , Dendrímeros/química , Portadores de Fármacos/química , Proteína HMGB1/genética , Fármacos Neuroprotetores/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Infarto Encefálico/genética , Infarto Encefálico/patologia , Infarto Encefálico/terapia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Inativação Gênica/efeitos dos fármacos , Immunoblotting , Imuno-Histoquímica , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Nylons/química , Poliésteres , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA