Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Chem Chem Phys ; 22(9): 5264-5271, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32095800

RESUMO

In this work, protein-surface interactions were probed in terms of adsorption and desorption of a model protein, bovine serum albumin, on a low-fouling surface with single-molecule localization microscopy. Single-molecule experiments enable precise determination of both adsorption and desorption rates. Strikingly the experimental data show anomalous desorption kinetics, evident as a surface dwell time that exhibits a power-law distribution, i.e. a heavy-tailed rather than the expected exponential distribution. As a direct consequence of this heavy-tailed distribution, the average desorption rate depends upon the time scale of the experiment and the protein surface concentration does not reach equilibrium. Further analysis reveals that the observed anomalous desorption emerges due to the reversible formation of a small fraction of soluble protein multimers (small oligomers), such that each one desorbs from the surface with a different rate. The overall kinetics can be described by a series of elementary reactions, yielding simple scaling relations that predict experimental observations. This work reveals a mechanistic origin for anomalous desorption kinetics that can be employed to interpret observations where low-protein fouling surfaces eventually foul when in long-term contact with protein solutions. The work also provides new insights that can be used to define design principles for non-fouling surfaces and to predict their performance.


Assuntos
Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Cinética , Microscopia de Fluorescência , Polietilenoglicóis/química , Propriedades de Superfície
2.
Biomacromolecules ; 15(10): 3772-80, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25171516

RESUMO

Proteoglycans (PGs) are important glycosylated proteins found on the cell surface and in the extracellular matrix. They are made up of a core protein with glycosaminoglycan (GAG) side chains. Variations in composition and number of GAG side chains lead to a vast array of PG sizes and functions. Here we present a method for the synthesis of proteoglycan-mimetic graft copolymers (or neoproteoglycans) with tunable GAG side-chain composition. This is done using three different GAGs: hyaluronan, chondroitin sulfate, and heparin. Hyaluronan is functionalized with a hydrazide-presenting linker. Either chondroitin sulfate or heparin is grafted by the reducing end on to the hyaluronan backbone through reductive amination. PG mimics with heparin or chondroitin sulfate side chains and four different ratios of GAG side chain result in graft copolymers with a wide range of sizes. The chemistry is confirmed through attentuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and (1)H NMR. Effective hydrodynamic diameter and zeta potential are determined using dynamic light scattering and electrophoretic mobility measurements. Graft copolymers were tested for their ability to bind and deliver basic fibroblast growth factor (FGF-2) to mesenchymal stem cells (MSCs). The chondroitin sulfate-containing graft copolymers successfully deliver FGF-2 to cells from surfaces. The lowest graft density of heparin-containing PG mimic also performs well with respect to growth factor delivery from a surface. This new method for preparation of GAG-based graft copolymers enables a wide range of graft density, and can be used to explore applications of PG mimics as new biomaterials with tunable biochemical and biomechanical functions.


Assuntos
Glicosaminoglicanos/química , Polímeros/química , Polímeros/metabolismo , Proteoglicanas/química , Proteoglicanas/metabolismo , Animais , Células Cultivadas , Sulfatos de Condroitina/química , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/química , Células-Tronco Mesenquimais/metabolismo , Ovinos
3.
Biotechnol Bioeng ; 110(2): 609-18, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22903591

RESUMO

Cortical bone allografts suffer from high rates of failure due to poor integration with host tissue, leading to non-union, fracture, and infection following secondary procedures. Here, we report a method for modifying the surfaces of cortical bone with coatings that have biological functions that may help overcome these challenges. These chitosan-heparin coatings promote mesenchymal stem cell attachment and have significant antibacterial activity against both S. aureus and E. coli. Furthermore, their chemistry is similar to coatings we have reported on previously, which effectively stabilize and deliver heparin-binding growth factors. These coatings have potential as synthetic periosteum for improving bone allograft outcomes.


Assuntos
Materiais Biocompatíveis/química , Transplante Ósseo/métodos , Quitosana/química , Heparina/química , Células-Tronco Mesenquimais/citologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Ácidos Graxos , Feminino , Fêmur , Células-Tronco Mesenquimais/efeitos dos fármacos , Periósteo/química , Espectroscopia Fotoeletrônica , Ovinos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
4.
Adv Healthc Mater ; 11(4): e2101979, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34788898

RESUMO

Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer-based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well-established ones) to enhance or achieve new properties for electrospun fiber materials.


Assuntos
Nanofibras , Biopolímeros , Polímeros , Engenharia Tecidual/métodos
5.
Biomacromolecules ; 12(7): 2755-65, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21644518

RESUMO

Polyelectrolyte multilayers using the polycations chitosan and N,N,N-trimethyl chitosan and the polyanions hyaluronan, chondroitin sulfate, and heparin are studied. Chitosan and hyaluronan behave as a weak polycation and weak polyanion, respectively, whereas N,N,N-trimethyl chitosan, chondroitin sulfate, and heparin behave as strong polyelectrolytes. Hydrophilicity is determined by water contact angle measurements and by comparing wet and dry film thickness measurements. Wet thickness is obtained using Fourier transform surface plasmon resonance, whereas dry thickness is obtained through ellipsometry. For the very thin PEMs studied here, the surface hydrophilicity and swelling in water are highly correlated. The multilayer chemistry is assessed by FT-IR and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS provide information about the composition, degree of ionization, and by inference, the ion pairing. We find that hydrophilicity and swelling are reduced when one polyelectrolyte is strong and the other is weak, whereas ion pairing is increased. By this combination of techniques, we are able to compose a unified description of how the PEM swelling is dictated by the ion pairing in thin polysaccharide-based PEMs.


Assuntos
Membranas Artificiais , Polissacarídeos/química , Configuração de Carboidratos , Eletrólitos/síntese química , Eletrólitos/química , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Molhabilidade , Raios X
6.
J Biomed Mater Res A ; 109(7): 1173-1182, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32985077

RESUMO

Incomplete osseointegration is primary cause of failure for orthopedic implants. New biomaterials that present stable signals promoting osteogenesis could reduce failure rates of orthopedic implants. In this study bone morphogenetic protein-2 (BMP-2) was delivered from titania nanotubes (Nt) modified with chitosan/heparin polyelectrolyte multilayers (PEMs). The surfaces were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. BMP-2 release from the surfaces was measured in vitro for up to 28 days. After an initial burst release of BMP-2 during the first 2 days, most of the BMP-2 remained on the surface. To determine the osteogenic properties of these surfaces, they were seeded with rat bone marrow cells; alkaline phosphatase (ALP) activity, total protein, calcium deposition, and osteocalcin were measured up to 4 weeks in vitro. When compared to Nt surfaces, the surfaces with BMP-2 induce greater osteocalcin and calcium deposition. PEMs provide sustained presentation of BMP-2, from a biomimetic surface. This enhances the osteogenic properties of the surface without requiring supraphysiologic growth factor dose. This growth factor delivery strategy could be used to improve bone healing outcomes and reduce complications for recipients of orthopedic implants.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Nanoestruturas/química , Osteogênese/efeitos dos fármacos , Titânio/química , Animais , Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/farmacologia , Células Cultivadas , Portadores de Fármacos/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos
7.
Adv Healthc Mater ; 10(7): e2001748, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33448158

RESUMO

When flowing whole blood contacts medical device surfaces, the most common blood-material interactions result in coagulation, inflammation, and infection. Many new blood-contacting biomaterials have been proposed based on strategies that address just one of these common modes of failure. This study proposes to mitigate unfavorable biological reactions that occur with blood-contacting medical devices by designing multifunctional surfaces, with features optimized to meet multiple performance criteria. These multifunctional surfaces incorporate the release of the small molecule hormone nitric oxide (NO) with surface chemistry and nanotopography that mimic features of the vascular endothelial glycocalyx. These multifunctional surfaces have features that interact with coagulation components, inflammatory cells, and bacterial cells. While a single surface feature alone may not be sufficient to achieve multiple functions, the release of NO from the surfaces along with their modification to mimic the endothelial glycocalyx synergistically improves platelet-, leukocyte-, and bacteria-surface interactions. This work demonstrates that new blood-compatible materials should be designed with multiple features, to better address the multiple modes of failure of blood-contacting medical devices.


Assuntos
Materiais Biocompatíveis , Endotélio Vascular , Biomimética , Coagulação Sanguínea , Plaquetas , Propriedades de Superfície
8.
Carbohydr Polym ; 273: 118541, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560953

RESUMO

Ideal wound dressings should be biocompatible, exhibit high antibacterial activity, and promote blood coagulation. To impart these imperative functions, carboxymethyl-kappa-carrageenan was incorporated into poly(vinyl alcohol) nanofibers (PVA-CMKC). The antibacterial activity of the nanofibers was evaluated. Adsorption of two important blood proteins, fibrinogen and albumin, was also assessed. The adhesion and activation of platelets, and the clotting of whole blood were evaluated to characterize the ability of the nanofibers to promote hemostasis. Adhesion and morphology of both Staphylococcus aureus and Pseudomonas aeruginosa were evaluated using fluorescence microscopy and scanning electron microscopy. CMKC-containing nanofibers demonstrated significant increases in platelet adhesion and activation, percentage of coagulation in whole blood clotting test and fibrinogen adsorption, compared to PVA nanofibers, showing blood coagulation activity. Incorporating CMKC also reduces adhesion and viability of S. aureus and P. aeruginosa bacteria after 24 h of incubation. PVA-CMKC nanofibers show potential application as dressings for wound healing applications.


Assuntos
Antibacterianos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Carragenina/farmacologia , Nanofibras/química , Cicatrização/efeitos dos fármacos , Albuminas/metabolismo , Antibacterianos/química , Bandagens , Materiais Biocompatíveis/farmacologia , Carragenina/química , Fibrinogênio/metabolismo , Humanos , Microscopia Eletrônica de Varredura/métodos , Ativação Plaquetária/efeitos dos fármacos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
9.
Macromol Biosci ; 21(1): e2000292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021064

RESUMO

This study presents a new type of biocompatible nanofiber based on poly(vinyl alcohol) (PVA) and carboxymethyl-kappa-carrageenan (CMKC) blends, produced with no generation of hazardous waste. The nanofibers are produced by electrospinning using PVA:CMKC blends with ratios of 1:0, 1:0.25, 1:0.4, 1:0.5, and 1:0.75 (w/w PVA:CMKC) in aqueous solution, followed by thermal crosslinking. The diameter of the fibers is in the nanometer scale and below 300 nm. Fourier transform infrared spectroscopy shows the presence of the carboxyl and sulfate groups in all the fibers with CMKC. The nanofibers from water-soluble polymers are stabilized by thermal crosslinking. The incorporation of CMKC improves cytocompatibility, biodegradability, cell growth, and cell adhesion, compared to PVA nanofibers. Furthermore, the incorporation of CMKC modulates phenotype of human adipose-derived stem cells (ADSCs). PVA/CMKC nanofibers enhance ADSC response to osteogenic differentiation signals and are therefore good candidates for application in tissue engineering to support stem cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanofibras/química , Osteogênese/efeitos dos fármacos , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Carragenina/química , Carragenina/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química
10.
Int J Biol Macromol ; 183: 727-742, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33915214

RESUMO

In this work free-standing gels formed from gellan gum (GG) by solvent evaporation are coated with polysaccharide-based polyelectrolyte multilayers, using the layer-by-layer approach. We show that PEMs composed of iota-carrageenan (CAR) and three different natural polycationic polymers have composition-dependent antimicrobial properties, and support mammalian cell growth. Cationic polymers (chitosan (CHT), N,N,N-trimethyl chitosan (TMC), and an amino-functionalized tannin derivative (TN)) are individually assembled with the anionic iota-carrageenan (CAR) at pH 5.0. PEMs (15-layers) are alternately deposited on the GG film. The GG film and coated GG films with PEMs are characterized by infrared spectroscopy with attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The TN/CAR coating provides a hydrophobic (WCA = 127°) and rough surface (Rq = 243 ± 48 nm), and the TMC/CAR coating provides a hydrophilic surface (WCA = 78°) with the lowest roughness (Rq = 97 ± 12 nm). Polymer coatings promote stability and durability of the GG film, and introduce antimicrobial properties against Gram-negative (Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria. The films are also cytocompatible. Therefore, they have properties that can be further developed as wound dressings and food packaging.


Assuntos
Anti-Infecciosos/síntese química , Materiais Biocompatíveis/síntese química , Carragenina/química , Quitosana/química , Polissacarídeos Bacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Embalagem de Alimentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polieletrólitos , Cicatrização
11.
Biomacromolecules ; 11(10): 2629-39, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20795698

RESUMO

It is generally accepted that both surface chemistry and biochemical cues affect mesenchymal stem cell (MSC) proliferation and differentiation. Several growth factors that have strong influences on MSC behavior bind to glycosaminoglycans in interactions that affect their stability and their biochemical activity. The goal of this work was to develop polysaccharide-based polyelectrolyte multilayers (PEMs) to bind and stabilize growth factors for delivery to MSCs. Using the naturally derived polysaccharides chitosan and heparin, PEMs were constructed on gold-coated glass chips, tissue-culture polystyrene (TCPS), and titanium. PEM construction and basic fibroblast growth factor (FGF-2) adsorption to PEMs were evaluated by Fourier transform surface plasmon resonance, X-ray photoelectron spectroscopy, and polarization modulation infrared reflection absorption spectroscopy. The functional response of bone marrow-derived ovine MSCs to FGF-2 on PEM-coated TCPS and titanium was evaluated in vitro, in the presence and absence of adsorbed fibronectin. The effect of FGF-2 dose and presentation on MSC attachment and proliferation was evaluated using low-serum media, over four days. On PEM-coated TCPS, we found that FGF-2 adsorbed to heparin-terminated PEMs with adsorbed fibronectin induces greater cell density and a higher proliferation rate of MSCs than any of the other conditions tested, including delivery of the FGF-2 in solution, at an optimally mitogenic dose. Cell densities on day four were 1.8 times higher when FGF-2 was delivered by adsorption to the PEM than when FGF-2 was delivered in solution. This system represents a promising candidate for the development of surface coatings that can stabilize and potentiate the activity of growth factors for therapeutic applications. Interestingly, the same effects were not observed when FGF-2 was delivered by adsorption to PEMs on titanium. When the polysaccharide-based PEMs were formed on titanium, the proliferative response of ovine MSCs to adsorbed FGF-2 was not as strong as the response to FGF-2 delivered in solution.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Fator 2 de Crescimento de Fibroblastos , Heparina/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Polímeros/química , Engenharia Tecidual/métodos , Adsorção , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Vidro/química , Ouro/química , Concentração de Íons de Hidrogênio , Células-Tronco Mesenquimais/citologia , Poliestirenos/química , Ligação Proteica , Estabilidade Proteica , Ovinos , Soluções , Propriedades de Superfície , Titânio/química
12.
Phytochemistry ; 170: 112195, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31743799

RESUMO

In plant spores and pollen, sporopollenin occurs as a structural polymer with remarkable resistance to chemical degradation. This recalcitrant polymer is well-suited to analysis by non-destructive infrared spectroscopy. However, existing infrared characterization of sporopollenin has been limited in scope and occasionally contradictory. This study provides a comprehensive structural analysis of sporopollenin in the Pinus ponderosa pollen exine using infrared spectroscopy, including detailed band assignments, descriptions of chemical reactivity, and comparison to multiple reference substances. We observe that the infrared spectral characteristics of sporopollenin prepared by enzymatic digestion of the polysaccharide-based intine are largely consistent with a copolymer of aliphatic lipids and trans-4-hydroxycinnamic acid, without distinct contributions from α-pyrone or carotenoid substructures.


Assuntos
Biopolímeros/análise , Carotenoides/análise , Compostos Fitoquímicos/análise , Pinus ponderosa/química , Estrutura Molecular , Espectrofotometria Infravermelho
13.
Acta Biomater ; 102: 169-180, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731023

RESUMO

Ultralow protein fouling behavior is a common target for new high-performance materials. Ultralow fouling is often defined based on the amount of irreversibly adsorbed protein (< 5 ng cm-2) measured by a surface ensemble averaging method. However, protein adsorption at solid interfaces is a dynamic process involving multiple steps, which may include adsorption, desorption, and irreversible protein denaturation. In order to better optimize the performance of antifouling surfaces, it is imperative to fully understand how proteins interact with surfaces, including kinetics of adsorption and desorption, conformation, stability, and amount of adsorbed proteins. Defining ultralow fouling surfaces based on a measurement at or near the limit of detection of a surface-averaged measurement may not capture all of this behavior. Single-molecule microscopy techniques can resolve individual protein-surface interactions with high temporal and spatial resolution. This information can be used to tune the properties of surfaces to better resist protein adsorption. In this work, we demonstrate how combining surface plasmon resonance, X-ray photoelectron spectroscopy, atomic force microscopy, and single-molecule localization microscopy provides a more complete picture of protein adsorption on low fouling and ultralow fouling polyelectrolyte multilayer and polymer brush surfaces, over different regimes of protein concentration. In this case, comparing the surfaces using surface plasmon resonance alone is insufficient to rank their resistance to protein adsorption. Our results suggest a revision of the accepted definition of ultralow fouling surfaces is timely: with the advent of time-resolved studies of protein adsorption kinetics at the single-molecule level, it is neither necessary nor sufficient to rely on a surface averaging techniques to qualify ultralow fouling surfaces. Since protein adsorption is a dynamic process, understanding how surface properties affect the kinetics of protein adsorption will enable the design of future generations of advanced antifouling materials. STATEMENT OF SIGNIFICANCE: The design of ultralow fouling surfaces is often optimized based on a single surface-averaging technique measuring the amount of irreversibly adsorbed protein. This work provides a critical comparison of alternative techniques for evaluating protein adsorption on low fouling and ultralow fouling surfaces, and demonstrates how additional information about the dynamics of protein-surface interactions at the interface can be obtained by application of single-molecule microscopy. This approach could be used to better elucidate mechanisms of protein resistance and design principles for advanced ultralow fouling materials.


Assuntos
Quitosana/química , Fibrinogênio/química , Ácido Hialurônico/química , Polietilenoglicóis/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Humanos , Cinética , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
14.
Int J Biol Macromol ; 152: 483-491, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32109473

RESUMO

Chemical modification of polysaccharides is an important route to enhance, develop or change polysaccharide properties. In this study, carboxymethylation of kappa-carrageenan (KC) with monochloroacetic acid was performed to achieve different degrees of substitution (DS) of carboxymethyl-kappa-carrageenan (CMKC). The degree of substitution ranged from 0.8 to 1.6 and was calculated from the 1H NMR spectra. The chemical structure of the CMKCs was further characterized by FT-IR, and 13C NMR. FT-IR confirmed the carboxymethylation. Carboxymethylation increased viscosity of KC in water and decreased viscosity of KC in synthetic human sweat. Tests with human adipose derived stem cells showed higher viability and lower cytotoxicity for CMKCs when compared to KC. CMKCs showed no hemolytic activity to human red blood cells. CMKCs have increased antioxidant activity compared to KC. In antibacterial assays, CMKCs with DS of 0.8, 1.0 and 1.2 exhibited growth inhibition against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. CMKC with DS ranging from 1.0 to 1.2 are good candidate biomaterials for cell-contacting applications.


Assuntos
Antibacterianos/química , Antioxidantes/química , Materiais Biocompatíveis/química , Carragenina/química , Acetatos/química , Adipócitos/citologia , Tecido Adiposo/citologia , Bacillus cereus , Sobrevivência Celular , Escherichia coli , Sequestradores de Radicais Livres , Hemólise , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Polímeros/química , Polissacarídeos/química , Pseudomonas aeruginosa , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Células-Tronco/citologia
15.
J Biomed Mater Res A ; 108(4): 992-1005, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909867

RESUMO

Biomaterial-associated thrombus formation and bacterial infection remain major challenges for blood-contacting devices. For decades, titanium-based implants have been largely used for different medical applications. However, titanium can neither suppress blood coagulation, nor prevent bacterial infections. To address these challenges, tanfloc/heparin polyelectrolyte multilayers on titania nanotubes array surfaces (NT) were developed. The surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. To evaluate the hemocompatibility of the surfaces, fibrinogen adsorption, Factor XII activation, and platelet adhesion and activation were analyzed. The antibacterial activity was investigated against Gram-negative P. aeruginosa and Gram-positive S. aureus. Bacterial adhesion and morphology, as well as biofilm formation, were analyzed using fluorescence microscopy and SEM. The anti-thrombogenic properties of the surfaces were demonstrated by significant decreases in fibrinogen adsorption, Factor XII activation, and platelet adhesion and activation. Modifying NT with tanfloc/heparin also reduces the adhesion and proliferation of P. aeruginosa and S. aureus bacteria after 24 hr of incubation, with no biofilm formation. The modified NT surfaces with tanfloc/heparin polyelectrolyte multilayers are a promising biomaterial for use on implant surfaces because of their enhanced blood biocompatibility and antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Heparina/farmacologia , Nanotubos/química , Polieletrólitos/farmacologia , Titânio/farmacologia , Adsorção , Fator XII/metabolismo , Fibrinogênio/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Nanotubos/ultraestrutura , Nitrogênio/química , Espectroscopia Fotoeletrônica , Adesividade Plaquetária/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Propriedades de Superfície , Água/química
16.
Mater Sci Eng C Mater Biol Appl ; 112: 110919, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409070

RESUMO

To develop hemocompatible surfaces, a cationic tannin derivate (TN) was used to prepare polyelectrolyte multilayers (PEMs) with the glycosaminoglycans heparin (HEP) and chondroitin sulfate (CS). The surface chemistry of the PEMs was characterized using X-ray photoelectron spectroscopy and water contact angle measurements. PEMs assembled with chitosan (CHI) and HEP or CS were used as controls. We investigate the hemocompatibility of PEMs by analyzing the adsorption of key blood serum proteins, adhesion and activation of platelets, and blood clotting kinetics. TN- and CHI-based PEMs adsorb similar amounts of albumin, whereas fibrinogen adsorption was more pronounced on TN-based PEMs, due to strong association with catechol groups. However, TN-based PEMs significantly reduce both platelet adhesion and platelet activation, while CHI-based PEMs promote platelet adhesion and activation. The whole-blood clotting kinetics assay also shows lower blood coagulation on TN-based PEMs. TN is an amphoteric, cationic, condensed tannin derivative with resonance structures. It also contains catechol groups, which are similar to those in mussel adhesive protein. These chemical features enable strong association with fibrinogen, which promotes the platelet-repelling effect. This study provides a new perspective for understanding platelet adhesion and activation on biomaterial surfaces, toward the development of new blood-compatible surfaces using a tannin derivative-based polymer.


Assuntos
Materiais Biocompatíveis/química , Plaquetas/metabolismo , Proteínas Sanguíneas/química , Polieletrólitos/química , Taninos/química , Adsorção , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Quitosana/química , Sulfatos de Condroitina/química , Heparina/química , Humanos , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Polifenóis/química , Propriedades de Superfície , Molhabilidade
17.
Mater Sci Eng C Mater Biol Appl ; 106: 110258, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753363

RESUMO

Here, we have demonstrated the production and characterization of hydrogel scaffolds based on chitosan/gellan gum (CS/GG) assemblies, without any covalent and metallic crosslinking agents, conventionally used to yield non-soluble polysaccharide-based materials. The polyelectrolyte complexes (physical hydrogels called as PECs) are characterized by Fourier-transform infrared spectroscopy, wide-angle X-ray scattering, and scanning electron microscopy. Hydrogels containing chitosan (CS) excesses (ranging from 60 to 80 wt%) were created. Durable polysaccharide-based scaffolds with structural homogeneity and interconnecting pore networks are developed by modulating the CS/GG weight ratio. The CS/GG hydrogel prepared at 80/20 CS/GG weight ratio (sample CS/GG80-20) is cytocompatible, supporting the attachment, growth, and spreading of bone marrow mesenchymal stem cells (BMSCs) after nine days of cell culture. The cytocompatibility is correlated to the swelling capacity of the PEC in PBS buffer (pH 7.4). By controlling the CS content, we can tune the water uptake of the material, enhancing the capacity to serve as a three-dimensional cell scaffold for BMSCs. This work presents for the first time that CS/GG hydrogels can be applied as scaffolds for tissue engineering purposes.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Polissacarídeos Bacterianos/química , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos
18.
Mater Sci Eng C Mater Biol Appl ; 107: 110357, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761187

RESUMO

This study reports the synthesis, characterization and biological properties of films based on poly(vinyl alcohol) (PVA) and a cationic tannin polymer derivative (TN). Films are obtained from polymeric blends by tuning the PVA/TN weight ratios. The materials are characterized through infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle measurements, mechanical analyses, and scanning electron microscopy. More hydrophilic surfaces are created by modulating the PVA and TN concentrations in the blends. Disintegration tests showed that the films present durability in phosphate buffer (pH 7.4) and low stability in simulated gastric fluid (pH 1.2). The film created at 90/10 PVA/TN weight ratio and crosslinked at 109 PVA/glutaraldehyde molar ratio (sample PVA10/TN10) supports the attachment and proliferation of bone marrow mesenchymal stem cells after 7 days of culture. The scaffolding capacity of the PVA10/TN10 surface is compared with titanium, one of the most important biomedical materials used in bone replacements. Also, the PVA/TN films exhibited cytocompatibility, antioxidant and antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. These properties make PVA/TN films are candidates for biomedical applications in the tissue engineering field.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Materiais Biocompatíveis/química , Taninos/farmacocinética , Animais , Antibacterianos/química , Antioxidantes/farmacocinética , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Glutaral/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Álcool de Polivinil/química , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Taninos/química
19.
Int J Biol Macromol ; 128: 114-123, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682481

RESUMO

Here we report a new and straightforward method to yield durable polyelectrolyte complexes (hydrogel PECs) from gellan gum (GG) and chitosan (CS) assemblies, without metallic and covalent crosslinking agents, commonly used to produce GG and CS-based hydrogels, respectively. This new approach overcomes challenges of obtaining stable and durable GG-based hydrogels with structural homogeneity, avoiding precipitation and aqueous instability, typical of PEC-based materials. PECs are created by blending CS:GG solutions (at 60 °C) with GG:CS weight ratios between 80:20 to 40:60. X-ray photoelectron spectroscopy (XPS) analysis shows that CS-GG chains are interacting by electrostatic and intermolecular forces, conferring a high degree of association to the washed PECs, characteristic of self-assembling of polymer chains. The CS:GG weight ratio can be tuned to improve polyelectrolyte complex (PEC) high porosity, stability, porous homogeneity, and degradation rate. Physical and thermosensitive CS/GG-based hydrogels can have advantages over conventional materials produced by chemical processes.


Assuntos
Quitosana/química , Polissacarídeos Bacterianos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Análise Espectral , Termodinâmica
20.
Biomacromolecules ; 9(7): 2021-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18564872

RESUMO

The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.


Assuntos
Quitosana/química , Heparina/química , Polímeros/síntese química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Polissacarídeos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA