Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(28): 11105-9, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733731

RESUMO

Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Acústica , Animais , Materiais Biocompatíveis , Engenharia Biomédica/métodos , Caenorhabditis elegans , Micromanipulação/instrumentação , Micromanipulação/métodos , Miniaturização , Pinças Ópticas , Tamanho da Partícula , Som , Transdutores
2.
Lab Chip ; 12(14): 2491-7, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22648600

RESUMO

We have developed an acoustic-based tunable patterning technique by which microparticles or cells can be arranged into reconfigurable patterns in microfluidic channels. In our approach, we use pairs of slanted-finger interdigital transducers (SFITs) to generate a tunable standing surface acoustic wave field, which in turn patterns microparticles or cells in one- or two-dimensional arrays inside the microfluidic channels--all without the assistance of fluidic flow. By tuning the frequency of the input signal applied to the SFITs, we have shown that the cell pattern can be controlled with tunability of up to 72%. This acoustic-based tunable patterning technique has the advantages of wide tunability, non-invasiveness, and ease of integration to lab-on-a-chip systems, and shall be valuable in many biological and colloidal studies.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Som , Coloides/química , Corantes Fluorescentes/química , Células HL-60 , Humanos , Técnicas Analíticas Microfluídicas/métodos , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA