Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 289(15): 10843-10852, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24570006

RESUMO

Termites and their symbiotic protists have established a prominent dual lignocellulolytic system, which can be applied to the biorefinery process. One of the major components of lignocellulose from conifers is glucomannan, which comprises a heterogeneous combination of ß-1,4-linked mannose and glucose. Mannanases are known to hydrolyze the internal linkage of the glucomannan backbone, but the specific mechanism by which they recognize and accommodate heteropolysaccharides is currently unclear. Here, we report biochemical and structural analyses of glycoside hydrolase family 26 mannanase C (RsMan26C) from a symbiotic protist of the termite Reticulitermes speratus. RsMan26C was characterized based on its catalytic efficiency toward glucomannan, compared with pure mannan. The crystal structure of RsMan26C complexed with gluco-manno-oligosaccharide(s) explained its specificities for glucose and mannose at subsites -5 and -2, respectively, in addition to accommodation of both glucose and mannose at subsites -3 and -4. RsMan26C has a long open cleft with a hydrophobic platform of Trp(94) at subsite -5, facilitating enzyme binding to polysaccharides. Notably, a unique oxidized Met(85) specifically interacts with the equatorial O-2 of glucose at subsite -3. Our results collectively indicate that specific recognition and accommodation of glucose at the distal negative subsites confers efficient degradation of the heteropolysaccharide by mannanase.


Assuntos
Isópteros/microbiologia , Mananas/metabolismo , Manosidases/metabolismo , Simbiose , beta-Manosidase/metabolismo , Animais , Biomassa , Catálise , Domínio Catalítico , Cromatografia em Camada Fina , Eucariotos/enzimologia , Glucose/metabolismo , Hidrólise , Intestinos/microbiologia , Lignina/metabolismo , Manose/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Especificidade por Substrato
2.
Appl Environ Microbiol ; 76(8): 2556-61, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20173066

RESUMO

Swollenin is a protein from Trichoderma reesei that has a unique activity for disrupting cellulosic materials, and it has sequence similarity to expansins, plant cell wall proteins that have a loosening effect that leads to cell wall enlargement. In this study we cloned a gene encoding a swollenin-like protein, Swo1, from the filamentous fungus Aspergillus fumigatus, and designated the gene Afswo1. AfSwo1 has a bimodular structure composed of a carbohydrate-binding module family 1 (CBM1) domain and a plant expansin-like domain. AfSwo1 was produced using Aspergillus oryzae for heterologous expression and was easily isolated by cellulose-affinity chromatography. AfSwo1 exhibited weak endoglucanase activity toward carboxymethyl cellulose (CMC) and bound not only to crystalline cellulose Avicel but also to chitin, while showing no detectable affinity to xylan. Treatment by AfSwo1 caused disruption of Avicel into smaller particles without any detectable reducing sugar. Furthermore, simultaneous incubation of AfSwo1 with a cellulase mixture facilitated saccharification of Avicel. Our results provide a novel approach for efficient bioconversion of crystalline cellulose into glucose by use of the cellulose-disrupting protein AfSwo1.


Assuntos
Aspergillus fumigatus/enzimologia , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergillus fumigatus/genética , Aspergillus oryzae/genética , Metabolismo dos Carboidratos , Carboximetilcelulose Sódica/metabolismo , Quitina/metabolismo , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
3.
Biosci Biotechnol Biochem ; 74(8): 1680-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20699551

RESUMO

Although termites are known to have a highly efficient lignocellulose-digesting system, mass production of native endogenous cellulases of termites has failed in Escherchia coli, and in Saccharomyces cerevisiae, and it has not been accomplished. Here we report the successful production, purification, and characterization of two termite endogenous beta-1,4-endoglucanases, RsEG and NtEG, from the salivary gland of Reticulitermes speratus and the midgut of Nasutitermes takasagoensis respectively, using Aspergillus oryzae as host. Thin-layer chromatography analysis showed that both enzymes hydrolyzed the beta-1,4-cellulosic linkage of cellodextrin into cellobiose and glucose. Kinetic studies indicated that the specific activity and Vmax values of the two enzymes were significantly higher than those of previously reported fungal and bacterial endoglucanases.


Assuntos
Aspergillus oryzae/genética , Celulase/biossíntese , Celulase/isolamento & purificação , Isópteros/enzimologia , Engenharia de Proteínas/métodos , Animais , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Clonagem Molecular , Meios de Cultivo Condicionados , DNA Complementar/genética , Isópteros/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA